987 resultados para finite-time tracking


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

What's known on the subject? And what does the study add? We have previously shown that percutaneous radiofrequency ablation guided by image-fusion technology allows for precise needle placement with real time ultrasound superimposed with pre-loaded imaging, removing the need for real-time CT or MR guidance. Emerging technology also allows real-time tracking of a treatment needle within an organ in a virtually created 3D format. To our knowledge, this is the first study utilising a sophisticated ultrasound-based navigation system that uses both image-fusion and real-time probe-tracking technologies for in-vivo renal ablative intervention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article provides importance sampling algorithms for computing the probabilities of various types ruin of spectrally negative Lévy risk processes, which are ruin over the infinite time horizon, ruin within a finite time horizon and ruin past a finite time horizon. For the special case of the compound Poisson process perturbed by diffusion, algorithms for computing probabilities of ruins by creeping (i.e. induced by the diffusion term) and by jumping (i.e. by a claim amount) are provided. It is shown that these algorithms have either bounded relative error or logarithmic efficiency, as t,x→∞t,x→∞, where t>0t>0 is the time horizon and x>0x>0 is the starting point of the risk process, with y=t/xy=t/x held constant and assumed either below or above a certain constant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity $Omega$ or constant angular momentum L surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. The analysis is carried out by combining asymptotic analysis and full numerical simulation by means of the boundary element method. We pay special attention to the stability/instability of equilibrium shapes and the possible formation of singularities representing a change in the topology of the fluid domain. When the evolution is at constant $Omega$, depending on its value, drops can take the form of a flat film whose thickness goes to zero in finite time or an elongated filament that extends indefinitely. When evolution takes place at constant L and axial symmetry is imposed, thin films surrounded by a toroidal rim can develop, but the film thickness does not vanish in finite time. When axial symmetry is not imposed and L is sufficiently large, drops break axial symmetry and, depending on the value of L, reach an equilibrium configuration with a 2-fold symmetry or break up into several drops with a 2- or 3-fold symmetry. The mechanism of breakup is also described

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article reviews several recently developed Lagrangian tools and shows how their com- bined use succeeds in obtaining a detailed description of purely advective transport events in general aperiodic flows. In particular, because of the climate impact of ocean transport processes, we illustrate a 2D application on altimeter data sets over the area of the Kuroshio Current, although the proposed techniques are general and applicable to arbitrary time depen- dent aperiodic flows. The first challenge for describing transport in aperiodical time dependent flows is obtaining a representation of the phase portrait where the most relevant dynamical features may be identified. This representation is accomplished by using global Lagrangian descriptors that when applied for instance to the altimeter data sets retrieve over the ocean surface a phase portrait where the geometry of interconnected dynamical systems is visible. The phase portrait picture is essential because it evinces which transport routes are acting on the whole flow. Once these routes are roughly recognised it is possible to complete a detailed description by the direct computation of the finite time stable and unstable manifolds of special hyperbolic trajectories that act as organising centres of the flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we address the problem of dynamic pricing to optimize the revenue coming from the sales of a limited inventory in a finite time-horizon. A priori, the demand is assumed to be unknown. The seller must learn on the fly. We first deal with the simplest case, involving only one class of product for sale. Furthermore the general situation is considered with a finite number of product classes for sale. In particular, a case in point is the sale of tickets for events related to culture and leisure; in this case, typically the tickets are sold months before the event, thus, uncertainty over actual demand levels is a very a common occurrence. We propose a heuristic strategy of adaptive dynamic pricing, based on experience gained from the past, taking into account, for each time period, the available inventory, the time remaining to reach the horizon, and the profit made in previous periods. In the computational simulations performed, the demand is updated dynamically based on the prices being offered, as well as on the remaining time and inventory. The simulations show a significant profit over the fixed-price strategy, confirming the practical usefulness of the proposed strategy. We develop a tool allowing us to test different dynamic pricing strategies designed to fit market conditions and seller s objectives, which will facilitate data analysis and decision-making in the face of the problem of dynamic pricing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study solutions of the two-dimensional quasi-geostrophic thermal active scalar equation involving simple hyperbolic saddles. There is a naturally associated notion of simple hyperbolic saddle breakdown. It is proved that such breakdown cannot occur in finite time. At large time, these solutions may grow at most at a quadruple-exponential rate. Analogous results hold for the incompressible three-dimensional Euler equation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For taxonomic levels higher than species, the abundance distributions of the number of subtaxa per taxon tend to approximate power laws but often show strong deviations from such laws. Previously, these deviations were attributed to finite-time effects in a continuous-time branching process at the generic level. Instead, we describe herein a simple discrete branching process that generates the observed distributions and find that the distribution's deviation from power law form is not caused by disequilibration, but rather that it is time independent and determined by the evolutionary properties of the taxa of interest. Our model predicts—with no free parameters—the rank-frequency distribution of the number of families in fossil marine animal orders obtained from the fossil record. We find that near power law distributions are statistically almost inevitable for taxa higher than species. The branching model also sheds light on species-abundance patterns, as well as on links between evolutionary processes, self-organized criticality, and fractals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We numerically study the aging properties of the dynamical heterogeneities in the Ising spin glass. We find that a phase transition takes place during the aging process. Statics-dynamics correspondence implies that systems of finite size in equilibrium have static heterogeneities that obey finite-size scaling, thus signaling an analogous phase transition in the thermodynamical limit. We compute the critical exponents and the transition point in the equilibrium setting, and use them to show that aging in dynamic heterogeneities can be described by a finite-time scaling ansatz, with potential implications for experimental work.