972 resultados para ferrous sulphate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For both MoO42− and WO42− the maximum rate of uptake by the small intestine of the rat (studied in vitro using the everted sac technique) occurs in the lower ileum. Kinetic constants, derived by a least squares procedure, are compared with those previously obtained for SO42− transport. For both and , , with only small differences between sacs IV and V. Mutual inhibition of MoO42− and WO42− transport and inhibition of both by SO42− are competitive processes. This is shown by the generally good agreement between values and derived values and by V values in the presence and absence of the inhibiting species. The three ions SO42−, MoO42− and WO42− are probably transferred across the intestine by a common carrier system. Implications for the sulphate-molybdenum interaction in molybdosis are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetic constants for SO42− transport by upper and lower rat ileum in vitro have been determined by computer fitting of rate vs concentration data obtained using the everted sac technique. MoO42− inhibition of this transport is competitive, and kinetic constants for the inhibition were similarly determined. Transport is also inhibited by the anions WO42−, S2O32− and SeO42−, in the order . These anions have no effect on the transport of l-valine. Low SO42− transport rates were observed in sacs from animals fed a high-molybdenum diet. The significance of the results with respect to the problem of molybdate toxicity in animals is discussed, and related to the known protective effect of SO42−.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H2O2via the action of added metal(II) ions. H2O2 generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin–iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative abundances of DNA of Mycosphaerella graminicola and Phaeosphaeria nodorum in archived wheat samples are closely correlated with UK anthropogenic emissions of oxidized sulphur over the last 160 years. To test whether this could be a causal relationship, possible modes of action of sulphur on the two fungi were examined. Mycelial growth of the two fungi in solutions of sulphurous acid was similar. Sulphurous acid at pH 4 reduced percentage germination of P. nodorum conidia more strongly than M. graminicola conidia. In spray inoculations of wheat cv. Squarehead’s Master, Cappelle Desprez and Riband with water or sulphurous acid (pH 4), the ratio of leaves infected by P. nodorum to leaves infected by M. graminicola was increased by factors of 2.5, 2.1 and 0.6, respectively at pH 4. The same three cultivars of wheat were grown in sand and vermiculite and fertilized with nutrient solution containing 2.5 or 0.5 mM sulphate. Both pathogens infected less frequently at 2.5 mM sulphate, by a factor of about 2. The severity of infection by M. graminicola was reduced on all three cultivars by a factor of about 4-5 at 2.5mM sulphate, but severity of P. nodorum was reduced only by a factor of about 2. Both elevated free sulphate concentrations in soil and sulphite in rainwater could therefore increase the prevalence of P. nodorum relative to M. graminicola, which is consistent with the historical changes in abundance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) in acid-sensitive upland waters is dominated by allochthonous inputs from organic-rich soils, yet inter-site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH-related retention of DOC in O horizon soils was influenced by acid-base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 μeq l−1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH-DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 μeq l−1), with the greatest decreases occurring in soils with very small % base saturation (BS, <3%) and/or large capacity for sulphate (SO42−) retention (up to 35% of added SO42−). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid-base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However,superimposed on this is the capacity of mineral soils to sorb DOC and SO42−, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42−.