624 resultados para fMRI
Resumo:
In this work, we describe hubs organization within the olfactory network with Functional Magnetic Resonance Imaging (fMRI). Granger causality analyses were applied in the supposed regions of interest (ROIs) involved in olfactory tasks, as described in [1]. We aim to get deeper knowledge about the hierarchy of the regions within the olfactory network and to describe which of these regions, in terms of strength of the connectivity, impair in different types of anosmia.
Resumo:
The way people with chronic low back pain think about pain can affect the way they move. This case report concerns a patient with chronic disabling low back pain who underwent functional magnetic resonance imaging scans during performance of a voluntary trunk muscle task under three conditions: directly after training in the task and, after one week of practice, before and after a 2.5 hour pain physiology education session. Before education there was widespread brain activity during performance of the task, including activity in cortical regions known to be involved in pain, although the task was not painful. After education widespread activity was absent so that there was no brain activation outside of the primary somatosensory cortex. The results suggest that pain physiology education markedly altered brain activity during performance of the task. The data offer a possible mechanism for difficulty in acquisition of trunk muscle training in people with pain and suggest that the change in activity associated with education may reflect reduced threat value of the task.
Resumo:
Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imagine (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.
Resumo:
Recently, we introduced a new 'GLM-beamformer' technique for MEG analysis that enables accurate localisation of both phase-locked and non-phase-locked neuromagnetic effects, and their representation as statistical parametric maps (SPMs). This provides a useful framework for comparison of the full range of MEG responses with fMRI BOLD results. This paper reports a 'proof of principle' study using a simple visual paradigm (static checkerboard). The five subjects each underwent both MEG and fMRI paradigms. We demonstrate, for the first time, the presence of a sustained (DC) field in the visual cortex, and its co-localisation with the visual BOLD response. The GLM-beamformer analysis method is also used to investigate the main non-phase-locked oscillatory effects: an event-related desynchronisation (ERD) in the alpha band (8-13 Hz) and an event-related synchronisation (ERS) in the gamma band (55-70 Hz). We show, using SPMs and virtual electrode traces, the spatio-temporal covariance of these effects with the visual BOLD response. Comparisons between MEG and fMRI data sets generally focus on the relationship between the BOLD response and the transient evoked response. Here, we show that the stationary field and changes in oscillatory power are also important contributors to the BOLD response, and should be included in future studies on the relationship between neuronal activation and the haemodynamic response. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Recent functional magnetic resonance imaging (fMRI) investigations of the interaction between cognition and reward processing have found that the lateral prefrontal cortex (PFC) areas are preferentially activated to both increasing cognitive demand and reward level. Conversely, ventromedial PFC (VMPFC) areas show decreased activation to the same conditions, indicating a possible reciprocal relationship between cognitive and emotional processing regions. We report an fMRI study of a rewarded working memory task, in which we further explore how the relationship between reward and cognitive processing is mediated. We not only assess the integrity of reciprocal neural connections between the lateral PFC and VMPFC brain regions in different experimental contexts but also test whether additional cortical and subcortical regions influence this relationship. Psychophysiological interaction analyses were used as a measure of functional connectivity in order to characterize the influence of both cognitive and motivational variables on connectivity between the lateral PFC and the VMPFC. Psychophysiological interactions revealed negative functional connectivity between the lateral PFC and the VMPFC in the context of high memory load, and high memory load in tandem with a highly motivating context, but not in the context of reward alone. Physiophysiological interactions further indicated that the dorsal anterior cingulate and the caudate nucleus modulate this pathway. These findings provide evidence for a dynamic interplay between lateral PFC and VMPFC regions and are consistent with an emotional gating role for the VMPFC during cognitively demanding tasks. Our findings also support neuropsychological theories of mood disorders, which have long emphasized a dysfunctional relationship between emotion/motivational and cognitive processes in depression.
Resumo:
Conference review
Resumo:
The fMRI Experience began as a postgraduate organised conference, to enable novice access to expertise in a developing and technically complex area, and for mutual support. This article investigates the seventh annual iteration of this emergent conference and evaluates its educational value. Key features are free attendance supported by sponsorship, a clear focus on student needs and a strong social programme and participation ethos to facilitate interaction. Predominantly qualitative data suggests that the event is of value to postgraduate participants and is also successful in attracting the participation of internationally leading researchers. The implications and value of the event for postgraduate education and for developing new fields of enquiry are discussed.
Resumo:
In this paper we consider how functional Magnetic Resonance Imaging (fMRI) has been used to study cortical connectivity in autism and autistic spectrum disorders (ASD). We discuss those studies that have contributed to the evidence supporting a model of disordered cortical connectivity in autism and (ASD), with a focusing emphasis on the application to research into the underconnectivity model. We note that the analytical techniques employed are limited and do not allow interpretation in terms of effective, or directional connectivity, nor do they provide information about the temporal or spectral characteristics of the functional networks being studied. We highlight how currently the features of neural generators that are being assessed by functional connectivity in fMRI are unclear. In addition, we note the importance in clinical studies of considering the consequences of task choice for the nature of the imaging data that can be collected and also of individual differences in participant state and trait characteristics for the accurate interpretation of imaging data. We discuss how alternative techniques such as EEG/MEG may address the limitations of fMRI in assessing brain connectivity, and additionally consider the potential of multimodal approaches. We conclude that fMRI has made significant contributions towards our understanding of the brain in terms of neural systems but that the conclusions drawn from its application in the sphere of autism research need to be approached with caution. It is important in research of this kind that we are aware of the need to examine the methodological and analytical techniques closely when applying findings in clinical populations, not only when they are used to support the development of theoretical models but also to inform diagnostic or treatment decisions.