897 resultados para estimation and filtering


Relevância:

90.00% 90.00%

Publicador:

Resumo:

First genome size estimations for some eudicot families and genera.- Genome size diversity in angiosperms varies roughly 2400-fold, although approximately 45% of angiosperm families lack a single genome size estimation, and therefore, this range could be enlarged. To contribute completing family and genera representation, DNA C-Values are here provided for 19 species from 16 eudicot families, including first values for 6 families, 14 genera and 17 species. The sample of species studied is very diverse, including herbs, weeds, vines, shrubs and trees. Data are discussed regarding previous genome size estimates of closely related species or genera, if any, their chromosome number, growth form or invasive behaviour. The present research contributes approximately 1.5% new values for previously unreported angiosperm families, being the current coverage around 55% of angiosperm families, according to the Plant DNA C-Values Database.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We presented an integrated hierarchical model of psychopathology that more accurately captures empirical patterns of comorbidity between clinical syndromes and personality disorders.In order to verify the structural validity of the model proposed, this study aimed to analyze the convergence between the Restructured Clinical (RC) scales and Personality scales (PSY-5) of the MMPI-2-RF and the Clinical Syndrome and Personality Disorder scales of the MCMI-III.The MMPI-2-RF and MCMI-III were administered to a clinical sample of 377 outpatients (167 men and 210 women).The structural hypothesiswas assessed by using a Confirmatory Factor Analytic design with four common superordinate factors. An independent-cluster-basis solution was proposed based on maximum likelihood estimation and the application of several fit indices.The fit of the proposed model can be considered as good and more so if we take into account its complexity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rationale Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. Objective The major aims were to investigate the pharmacokineticsa and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. Methods Mephedrone was administered to male SpragueDawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180240 min. Results Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α=10.23 h−1, β=1.86 h−1). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10 % and the percentage of mephedrone protein binding was 21.59±3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85±0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokineticpharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. Conclusions We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude,and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The improvement of the dynamics of flexible manipulators like log cranes often requires advanced control methods. This thesis discusses the vibration problems in the cranes used in commercial forestry machines. Two control methods, adaptive filtering and semi-active damping, are presented. The adaptive filter uses a part of the lowest natural frequency of the crane as a filtering frequency. The payload estimation algorithm, filtering of control signal and algorithm for calculation of the lowest natural frequency of the crane are presented. The semi-active damping method is basedon pressure feedback. The pressure vibration, scaled with suitable gain, is added to the control signal of the valve of the lift cylinder to suppress vibrations. The adaptive filter cuts off high frequency impulses coming from the operatorand semi-active damping suppresses the crane?s oscillation, which is often caused by some external disturbance. In field tests performed on the crane, a correctly tuned (25 % tuning) adaptive filter reduced pressure vibration by 14-17 % and semi-active damping correspondingly by 21-43%. Applying of these methods require auxiliary transducers, installed in specific points in the crane, and electronically controlled directional control valves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rationale Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. Objective The major aims were to investigate the pharmacokineticsa and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. Methods Mephedrone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α=10.23 h−1, β=1.86 h−1). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10 % and the percentage of mephedrone protein binding was 21.59±3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85±0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokinetic-pharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. Conclusions We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude,and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Internet on elektronisen postin perusrakenne ja ollut tärkeä tiedonlähde akateemisille käyttäjille jo pitkään. Siitä on tullut merkittävä tietolähde kaupallisille yrityksille niiden pyrkiessä pitämään yhteyttä asiakkaisiinsa ja seuraamaan kilpailijoitansa. WWW:n kasvu sekä määrällisesti että sen moninaisuus on luonut kasvavan kysynnän kehittyneille tiedonhallintapalveluille. Tällaisia palveluja ovet ryhmittely ja luokittelu, tiedon löytäminen ja suodattaminen sekä lähteiden käytön personointi ja seuranta. Vaikka WWW:stä saatavan tieteellisen ja kaupallisesti arvokkaan tiedon määrä on huomattavasti kasvanut viime vuosina sen etsiminen ja löytyminen on edelleen tavanomaisen Internet hakukoneen varassa. Tietojen hakuun kohdistuvien kasvavien ja muuttuvien tarpeiden tyydyttämisestä on tullut monimutkainen tehtävä Internet hakukoneille. Luokittelu ja indeksointi ovat merkittävä osa luotettavan ja täsmällisen tiedon etsimisessä ja löytämisessä. Tämä diplomityö esittelee luokittelussa ja indeksoinnissa käytettävät yleisimmät menetelmät ja niitä käyttäviä sovelluksia ja projekteja, joissa tiedon hakuun liittyvät ongelmat on pyritty ratkaisemaan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In mathematical modeling the estimation of the model parameters is one of the most common problems. The goal is to seek parameters that fit to the measurements as well as possible. There is always error in the measurements which implies uncertainty to the model estimates. In Bayesian statistics all the unknown quantities are presented as probability distributions. If there is knowledge about parameters beforehand, it can be formulated as a prior distribution. The Bays’ rule combines the prior and the measurements to posterior distribution. Mathematical models are typically nonlinear, to produce statistics for them requires efficient sampling algorithms. In this thesis both Metropolis-Hastings (MH), Adaptive Metropolis (AM) algorithms and Gibbs sampling are introduced. In the thesis different ways to present prior distributions are introduced. The main issue is in the measurement error estimation and how to obtain prior knowledge for variance or covariance. Variance and covariance sampling is combined with the algorithms above. The examples of the hyperprior models are applied to estimation of model parameters and error in an outlier case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Technical analysis of Low Voltage Direct Current (LVDC) distribution systems shows that in LVDC transmission the customer voltage quality is higher. One of the problems in LVDC distribution networks that converters both ends of the DC line are required. Because of the converters produce not pure DC voltage, but some fluctuations as well, the huge electrolytic capacitors are required to reduce voltage distortions in the DC-side. This thesis master’s thesis is focused on calculating required DC-link capacitance for LVDC transmission and estimation of the influence of different parameters on the voltage quality. The goal is to investigate the methods of the DC-link capacitance estimation and location in the transmission line.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work aimed to develop allometric equations for tree biomass estimation, and to determine the site biomass in different "cerrado" ecosystems. Destructive sampling in a "campo cerrado" (open savanna) was carried out at the Biological Reserve of Moji-Guaçu, State of São Paulo, southeastern Brazil. This "campo cerrado" (open savanna) grows under a tropical climate and on acid, low nutrient soils. Sixty wood plants were cut to ground level and measurements of diameter, height and weight of leaves and stems were taken. We selected the best equations among the most commonly used mathematical relations according to R² values, significance, and standard error. Both diameter (D) and height (H) showed good relationship with plant biomass, but the use of these two parameters together (DH and D²H) provided the best predictor variables. The best equations were linear, but power and exponential equations also showed high R² and significance. The applicability of these equations is discussed and biomass estimates are compared with other types of tropical savannas. Mineralmass was also estimated. "Cerrados" proved to have very important carbon reservoirs due to their great extent. In addition, high land-use change that takes place nowadays in the "cerrado" biome may significantly affect the global carbon cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, the suitability of different trackers for finger tracking in high-speed videos was studied. Tracked finger trajectories from the videos were post-processed and analysed using various filtering and smoothing methods. Position derivatives of the trajectories, speed and acceleration were extracted for the purposes of hand motion analysis. Overall, two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning tracking, performed better than the others in the tests. Both achieved high accuracy for the selected high-speed videos and also allowed real-time processing, being able to process over 500 frames per second. In addition, the results showed that different filtering methods can be applied to produce more appropriate velocity and acceleration curves calculated from the tracking data. Local Regression filtering and Unscented Kalman Smoother gave the best results in the tests. Furthermore, the results show that tracking and filtering methods are suitable for high-speed hand-tracking and trajectory-data post-processing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The shift towards a knowledge-based economy has inevitably prompted the evolution of patent exploitation. Nowadays, patent is more than just a prevention tool for a company to block its competitors from developing rival technologies, but lies at the very heart of its strategy for value creation and is therefore strategically exploited for economic pro t and competitive advantage. Along with the evolution of patent exploitation, the demand for reliable and systematic patent valuation has also reached an unprecedented level. However, most of the quantitative approaches in use to assess patent could arguably fall into four categories and they are based solely on the conventional discounted cash flow analysis, whose usability and reliability in the context of patent valuation are greatly limited by five practical issues: the market illiquidity, the poor data availability, discriminatory cash-flow estimations, and its incapability to account for changing risk and managerial flexibility. This dissertation attempts to overcome these impeding barriers by rationalizing the use of two techniques, namely fuzzy set theory (aiming at the first three issues) and real option analysis (aiming at the last two). It commences with an investigation into the nature of the uncertainties inherent in patent cash flow estimation and claims that two levels of uncertainties must be properly accounted for. Further investigation reveals that both levels of uncertainties fall under the categorization of subjective uncertainty, which differs from objective uncertainty originating from inherent randomness in that uncertainties labelled as subjective are highly related to the behavioural aspects of decision making and are usually witnessed whenever human judgement, evaluation or reasoning is crucial to the system under consideration and there exists a lack of complete knowledge on its variables. Having clarified their nature, the application of fuzzy set theory in modelling patent-related uncertain quantities is effortlessly justified. The application of real option analysis to patent valuation is prompted by the fact that both patent application process and the subsequent patent exploitation (or commercialization) are subject to a wide range of decisions at multiple successive stages. In other words, both patent applicants and patentees are faced with a large variety of courses of action as to how their patent applications and granted patents can be managed. Since they have the right to run their projects actively, this flexibility has value and thus must be properly accounted for. Accordingly, an explicit identification of the types of managerial flexibility inherent in patent-related decision making problems and in patent valuation, and a discussion on how they could be interpreted in terms of real options are provided in this dissertation. Additionally, the use of the proposed techniques in practical applications is demonstrated by three fuzzy real option analysis based models. In particular, the pay-of method and the extended fuzzy Black-Scholes model are employed to investigate the profitability of a patent application project for a new process for the preparation of a gypsum-fibre composite and to justify the subsequent patent commercialization decision, respectively; a fuzzy binomial model is designed to reveal the economic potential of a patent licensing opportunity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Baltic Sea is a unique environment that contains unique genetic populations. In order to study these populations on a genetic level basic molecular research is needed. The aim of this thesis was to provide a basic genetic resource for population genomic studies by de novo assembling a transcriptome for the Baltic Sea isopod Idotea balthica. RNA was extracted from a whole single adult male isopod and sequenced using Illumina (125bp PE) RNA-Seq. The reads were preprocessed using FASTQC for quality control, TRIMMOMATIC for trimming, and RCORRECTOR for error correction. The preprocessed reads were then assembled with TRINITY, a de Bruijn graph-based assembler, using different k-mer sizes. The different assemblies were combined and clustered using CD-HIT. The assemblies were evaluated using TRANSRATE for quality and filtering, BUSCO for completeness, and TRANSDECODER for annotation potential. The 25-mer assembly was annotated using PANNZER (protein annotation with z-score) and BLASTX. The 25-mer assembly represents the best first draft assembly since it contains the most information. However, this assembly shows high levels of polymorphism, which currently cannot be differentiated as paralogs or allelic variants. Furthermore, this assembly is incomplete, which could be improved by sampling additional developmental stages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.