697 resultados para enjoyment of exercise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to test the hypothesis of differences in performance including differences in ST-T wave changes between healthy men and women submitted to an exercise stress test. Two hundred (45.4%) men and 241 (54.6%) women (mean age: 38.7 ± 11.0 years) were submitted to an exercise stress test. Physiologic and electrocardiographic variables were compared by the Student t-test and the chi-square test. To test the hypothesis of differences in ST-segment changes, data were ranked with functional models based on weighted least squares. To evaluate the influence of gender and age on the diagnosis of ST-segment abnormality, a logistic model was adjusted; P < 0.05 was considered to be significant. Rate-pressure product, duration of exercise and estimated functional capacity were higher in men (P < 0.05). Sixteen (6.7%) women and 9 (4.5%) men demonstrated ST-segment upslope ≥0.15 mV or downslope ≥0.10 mV; the difference was not statistically significant. Age increase of one year added 4% to the chance of upsloping of segment ST ≥0.15 mV or downsloping of segment ST ≥0.1 mV (P = 0.03; risk ratio = 1.040, 95% confidence interval (CI) = 1.002-1.080). Heart rate recovery was higher in women (P < 0.05). The chance of women showing an increase of systolic blood pressure ≤30 mmHg was 85% higher (P = 0.01; risk ratio = 1.85, 95%CI = 1.1-3.05). No significant difference in the frequency of ST-T wave changes was observed between men and women. Other differences may be related to different physical conditioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. - The present study evaluated the effects of BCAA supplementation on exercise performance of pregnant rats. Methods. - In order to assess these effects, Wistar rats were divided into four groups: sedentary not-supplemented (SNS, n = 8); sedentary supplemented (SS, n = 8); trained not-supplemented (TNS, n = 8) and trained supplemented (TS, n = 8). All groups were submitted to the endurance test until exhaustion (ET) and post-effort lactate (PEL) determination before pregnancy (ET-B and PEL-B) and at the 19th day of pregnancy (ET-19 and PEL-19). Results. - The endurance training significantly increased the ET time to exhaustion (p<0.05). Regardless of BCAA supplementation, both endurance trained groups (TS and TNS) showed a longer time to exhaustion, assessed by ET, compared with the sedentary groups (SS and SNS) (p < 0.05). In the TNS, ET-19 time to exhaustion decreased when compared with the period before pregnancy. On the other hand, ET-19 time to exhaustion was not affected in the TS at the end of the pregnancy period. In addition, TS showed a marked PEL-19 reduction when compared with PEL-B. The data presented herein suggest that BCAA supplementation plays an ergogenic role in the maintenance of exercise performance during pregnancy in rats. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ARTIOLI, G. G., B. GUALANO, A. SMITH, J. STOUT, and A. H. LANCHA, JR. Role of beta-Alanine Supplementation on Muscle Carnosine and Exercise Performance. Med. Sci. Sports Exerc., Vol. 42, No. 6, pp. 1162-1173, 2010. In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids L-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or (V) over dotO(2max), some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart failure (HF) is associated with changes in the skeletal muscle (SM) which might be a consequence of the unbalanced local expression of pro- (TNF-alpha) and anti- (IL-10) inflammatory cytokines, leading to inflammation-induced myopathy, and SM wasting. This local effect of HF on SM may, on the other hand, contribute to systemic inflammation, as this tissue actively secretes cytokines. Since increasing evidence points out to an anti-inflammatory effect of exercise training, the goal of the present study was to investigate its effect in rats with HF after post-myocardial infarction (MI), with special regard to the expression of TNF-alpha and IL-10 in the soleus and extensor digitorum longus (EDL), muscles with different fiber composition. Wistar rats underwent left thoracotomy with ligation of the left coronary artery, and were randomly assigned to either a sedentary (Sham-operated and MI sedentary) or trained (Sham-operated and MI trained) group. Animals in the trained groups ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/week, for 8-10 weeks. The training protocol was able to reverse the changes induced by MI, decreasing TNF-alpha protein (26%, P < 0.05) and mRNA (58%, P < 0.05) levels in the soleus, when compared with the sedentary MI group. Training also increased soleus IL-10 expression (2.6-fold, P < 0.001) in post-MI HF rats. As a consequence, the IL-10/TNF-alpha ratio was increased. This ""anti-inflammatory effect"" was more pronounced in the soleus than in the EDL, suggesting a fiber composition dependent response. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of exercise training (ET) on cardiac renin-angiotensin system (RAS) was investigated in 3-5 month-old mice lacking alpha(2A-) and alpha(2C-)adrenoceptors (alpha(2A)/alpha(2C)ARKO) that present heart failure (HF) and wild type control (WT). ET consisted of 8-week running sessions of 60 min, 5 days/week. In addition, exercise tolerance, cardiac structural and function analysis were made. At 3 months, fractional shortening and exercise tolerance were similar between groups. At 5 months, alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction and fibrosis associated with increased cardiac angiotensin (Ang) II levels (2.9-fold) and increased local angiotensin-converting enzyme activity (ACE 18%). ET decreased alpha(2A)/alpha(2C)ARKO cardiac Ang II levels and ACE activity to age-matched untrained WT mice levels while increased ACE2 expression and prevented exercise intolerance and ventricular dysfunction with little impact on cardiac remodeling. Altogether, these data provide evidence that reduced cardiac RAS explains, at least in part, the beneficial effects of ET on cardiac function in a genetic model of HF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to compare and correlate training impulse (TRIMP) estimates proposed by Banister (TRIMP(Banister)), Stagno (TRIMP(Stagno)) and Manzi (TRIMP(Manzi)). The subjects were submitted to an incremental test on cycle ergometer with heart rate and blood lactate concentration measurements. In the second occasion, they performed 30 min. of exercise at the intensity corresponding to maximal lactate steady state, and TRIMP(Banister), TRIMP(Stagno) and TRIMP(Manzi) were calculated. The mean values of TRIMP(Banister) (56.5 +/- 8.2 u.a.) and TRIMP(Stagno) (51.2 +/- 12.4 u.a.) were not different (P > 0.05) and were highly correlated (r = 0.90). Besides this, they presented a good agreement level, which means low bias and relatively narrow limits of agreement. On the other hand, despite highly correlated (r = 0.93), TRIMP(Stagno) and TRIMP(Manzi) (73.4 +/- 17.6 u.a.) were different (P < 0.05), with low agreement level. The TRIMP(Banister) e TRIMP(Manzi) estimates were not different (P = 0.06) and were highly correlated (r = 0.82), but showed low agreement level. Thus, we concluded that the investigated TRIMP methods are not equivalent. In practical terms, it seems prudent monitor the training process assuming only one of the estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The allele threonine (T) of the angiotensinogen has been associated with ventricular hypertrophy in hypertensive patients and soccer players. However, the long-term effect of physical exercise in healthy athletes carrying the T allele remains unknown. We investigated the influence of methionine M or T allele of the angiotensinogen and D or I allele of the angiotensin-converting enzyme on left-ventricular mass index (LVMI) and maximal aerobic capacity in young healthy individuals after long-term physical exercise training. Design Prospective clinical trial. Methods Eighty-three policemen aged between 20 and 35 years (mean +/- SD 26 +/- 4.5 years) were genotyped for the M235T gene angiotensinogen polymorphism (TT, n=25; MM/MT, n=58) and angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism (11, n=18; DD/DI, n=65). Left-ventricular morphology was evaluated by echocardiography and maximal aerobic capacity (VO(2peak)) by cardiopulmonary exercise test before and after 17 weeks of exercise training (50-80% VO(2peak)). Results Baseline VO(2peak) and LVMI were similar between TT and MM/MT groups, and II and DD/DI groups. Exercise training increased significantly and similarly VO(2peak) in homozygous TT and MM/MT individuals, and homozygous II and DD/DI individuals. In addition, exercise training increased significantly LVMI in TT and MM/MT individuals (76.5 +/- 3 vs. 86.7 +/- 4, P=0.00001 and 76.2 +/- 2 vs. 81.4 +/- 2, P=0.00001, respectively), and II and DD/DI individuals (777 +/- 4 vs. 81.5 +/- 4, P=0.0001 and 76 +/- 2 vs. 83.5 +/- 2, P=0.0001, respectively). However, LVMI I in TT individuals was significantly greater than in MM/MT individuals (P=0.04). LVMI was not different between 11 and DD/DI individuals. Conclusion Left-ventricular hypertrophy caused by exercise training is exacerbated in homozygous TT individuals with angiotensinogen polymorphism. Eur J Cardiovasc Prev Rehabil 16:487-492 (C) 2009 The European Society of Cardiology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were to examine the plasma concentrations of inflammatory mediators including cytokines induced by a single bout of eccentric exercise and again 4 weeks later by a second bout of eccentric exercise of the same muscle group. Ten untrained male subjects performed two bouts of the eccentric exercise involving the elbow flexors (6 sets of 5 repetitions) separated by four weeks. Changes in muscle soreness, swelling, and function following exercise were compared between the bouts. Blood was sampled before, immediately after, 1 h, 3 h, 6 h, 24 h (1 d), 48 h (2 d), 72 h (3 d), 96 h (4 d) following exercise bout to measure plasma creatine kinase (CK) activity, plasma concentrations of myoglobin (Mb), interleukin (IL)-1 beta, IL-1 receptor antagonist (IL-1ra), IL-4, IL-6, IL-8, IL-10, IL-12p40, tumor necrosis factor (TNF)-alpha, granulocyte colony-stimulating factor (G-CSF), myeloperoxidase (MPO), prostaglandin E-2 (PGE(2)), heat shock protein (HSP) 60 and 70. After the first bout, muscle soreness increased significantly, and there was also significant increase in upper arm circumference; muscle function decreased and plasma CK activity and Mb concentration increased significantly. These changes were significantly smaller after the second bout compared to the first bout, indicating muscle adaptation to the repeated bouts of the eccentric exercise. Despite the evidence of greater muscle damage after the first bout, the changes in cytokines and other inflammatory mediators were quite minor, and considerably smaller than that following endurance exercise. These results suggest that eccentric exercise-induced muscle damage is not associated with the significant release of cytokines into the systemic circulation. After the first bout, plasma G-CSF concentration showed a small but significant increase, whereas TNF-alpha and IL-8 showed significant decreases compared to the pre-exercise values. After the second bout, there was a significant increase in IL-10, and a significant decrease in IL-8. In conclusion, although there was evidence of severe muscle damage after the eccentric exercise, this muscle damage was not accompanied by any large changes in plasma cytokine concentrations. The minor changes in systemic cytokine concentration found in this study might reflect more rapid clearance from the circulation, or a lack of any significant metabolic or oxidative demands during this particular mode of exercise. In relation to the adaptation to the muscle damage, the anti-inflammatory cytokine IL-10 might work as one of the underlying mechanisms of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect of two anti-pronation taping techniques on vertical navicular height, an indicator of foot pronation, after its application and 20 min of exercise. The taping techniques were: the low dye (LD) and low dye with the addition of calcaneal slings and reverse sixes (LDCR). A repeated measures study was used. It found that LDCR was superior to LD and control immediately after application and exercise. LD was better than control immediately after application but not after exercise. These findings provide practical directions to clinicians regularly using anti-pronation taping techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we analyzed the effect of aerobic exercise training (AET) and of a single bout of exercise on plasma oxidative stress and on antioxidant defenses in type 2 diabetes mellitus (DM) and in healthy control subjects (C). DM and C did not differ regarding triglycerides, high-density lipoprotein cholesterol (HDL-c), insulin, and HOMA index at baseline and after AET. To measure the lag time for low-density lipoprotein (LDL) oxidation (LAG) and the maximal rate of conjugated diene formation (MCD), participants` plasma HDL(2) and HDL(3) were incubated with LDL from pooled healthy donors` plasma. In the presence of HDL(3), both LAG and MCD were similar in C and DM, but only in DM did AET improve LAG and reduce MCD. In the presence of HDL(2), the lower baseline LAG in DM equaled C after AET. MCD was unchanged in DM after AET, but was lower than C only after AET. Furthermore, after AET plasma thiobarbituric acid-reactive substances were reduced only in DM subjects. Despite not modifying the total plasma antioxidant status and serum paraoxonase-1 activity in both groups, AET lowered the plasma lipid peroxides, corrected the HDL(2), and improved the HDL(3) antioxidant efficiency in DM independent of the changes in blood glucose, insulin, and plasma HDL concentration and composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine the preventive effect of exercise on lumbar vertebrae in ovariectomized rats. Three-month-old female Wistar rats were divided into 3 groups: control group (A, n = 10); non-exercised ovariectomized group (B, n = 7) and exercised ovariectomized group (C, n = 7). The rats from group C were subjected to treadmill exercise (15 m/minute in the initial six weeks and 19 m/minute in the next six weeks, 1 hour/day, 4 days/week) for 12 weeks. At death, the fourth lumbar vertebrae were removed and an anthropometrical analysis by a paquimeter and a mechanical compression test by a universal test machine were performed. After 12 weeks, the ovariectomy decreased the superior-inferior vertebral height and the maximal braking load in group B compared to group A, while the exercise increased the vertebral mass in group C compared to both groups A and B (p < 0.01) and the stiffness compared to group B. We concluded the physical activity has an important role to prevent the osteopenia in lumbar vertebrae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.