984 resultados para energy gap


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the bandgap effect and the thermo-optical response of high-index liquid crystal (LC) infiltrated in photonic crystal fibers (PCF) and in hybrid photonic crystal fibers (HPCF). The PCF and HPCF consist of solid-core microstructured optical fibers with hexagonal lattice of air-holes or holes filled with LC. The HPCF is built from the PCF design by changing its cladding microstructure only in a horizontal central line by including large holes filled with high-index material. The HPCF supports propagating optical modes by two physical effects: the modified total internal reflection (mTIR) and the photonic bandgap (PBG). Nevertheless conventional PCF propagates light by the mTIR effect if holes are filled with low refractive index material or by the bandgap effect if the microstructure of holes is filled with high refractive-index material. The presence of a line of holes with high-index LC determines that low-loss optical propagation only occurs on the bandgap condition. The considered nematic liquid crystal E7 is an anisotropic uniaxial media with large thermo-optic coefficient; consequently temperature changes cause remarkable shifts in the transmission spectrums allowing thermal tunability of the bandgaps. Photonic bandgap guidance and thermally induced changes in the transmission spectrum were numerically investigated by using a computational program based on the beam propagation method. © 2010 SPIE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the susceptibility of a current-mode bandgap voltage reference to electromagnetic interference (EMI) superimposed to the power supply is investigated by simulation. Designed for AMS 0.35 CMOS process, the circuit provides a stable voltage reference in the temperature range of -40-150°C. When EMI disturbances are present, the circuit exhibits only 6.7 mV of offset for interfering signals in the frequency range of 150 kHz-1 GHz. © 2011 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The widespread use of poly(3-hexylthiophene) (P3HT) in the active layers of organic solar cells indicates that it possesses chemical stability and solubility suitable for such an application. However, it would be desirable to have a material that can maintain these properties but with a smaller bandgap, which would lead to more efficient energy harvesting of the solar spectrum. Fifteen P3HT derivatives were studied using the Density Functional Theory. The conclusion is that it is possible to obtain compounds with significantly smaller bandgaps and with solubility and stability similar to that of P3HT, mostly through the binding of oxygen atoms or conjugated organic groups to the thiophenic ring. © 2013 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mo-doped TiO2 powders were prepared using a dry mixture of TiO2 and MoO3 oxides with several compositions, followed by a calcination step at several temperatures. The resulting oxide system develops yellow and green tones. The XRD patterns showed only traces of MoO 3; however, EDS results, combined with TG/DTA data, confirmed the presence of molybdenum ions, suggesting that the changes in optical properties of the oxide system is due to the incorporation of Mo ions into the TiO 2 matrix, substituting Ti+4 with Mo+6 ions. The band gap decreased with increasing of MoO3 content; on the other hand, the band gap reached a maximum value at about 850°C to 910°C when plotted as a function of the calcination temperature. The glazes produced showed that the oxide system under study is a potential material for use as abinary ceramic pigment. Copyright © 2013 Taylor & Francis Group, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, it is presented a novel method for calculating some intrinsic parameters such as capture mean time, thermic emission mean time, capture probability and noise gain on quantum well infrared photodetectors. Such devices are built by depositing layers of semiconductors of different energy gap, forming quantum wells. The present method uses rate equations to describe the occupation of discrete states of the quantum wells, that together with noise gain equations given in literature, are solved self consistently. The input data of the method is experimental measurement of dark current (current measured with no relevant incident photon) versus applied bias. In order to validate this approach, the values obtained were compared with results from literature

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.