985 resultados para energiavisio 2050
Resumo:
HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10(-12)). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the 'intermediate phenotype' nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.
Resumo:
BACKGROUND: Changes in antihypertensive drug treatment are paramount in the adequate management of patients with hypertension, still, there is little information regarding changes in antihypertensive drug treatment in Switzerland. Our aim was to assess those changes and associated factors in a population-based, prospective study. METHODS: Data from the population-based, CoLaus study, conducted among subjects initially aged 35-75 years and living in Lausanne, Switzerland. 772 hypertensive subjects (371 women) were followed for a median of 5.4 years. Data Subjects were defined as continuers (no change), switchers (one antihypertensive class replaced by another), combiners (one antihypertensive class added) and discontinuers (stopped treatment). The distribution and the factors associated with changes in antihypertensive drug treatment were assessed. RESULTS: During the study period, the prescription of diuretics decreased and of ARBs increased: at baseline, diuretics were taken by 46.9% of patients; angiotensin receptor blockers (ARB) by 44.7%, angiotensin converting enzyme inhibitors (ACEI) by 28.8%, beta-blockers (BB) by 28.0%, calcium channel blockers (CCB) by 18.9% and other antihypertensive drugs by 0.3%. At follow-up (approximately 5 years later), their corresponding percentages were 42.8%, 51.7%, 25.5%, 33.0% 20.7% and 1.0%. Among all participants, 54.4% (95% confidence interval: 50.8-58.0) were continuers, 26.9% (23.8-30.2) combiners, 12.7% (10.4-15.3) switchers and 6.0% (4.4-7.9) discontinuers. Combiners had higher systolic blood pressure values at baseline than the other groups (p < 0.05). Almost one third (30.6%) of switchers and 29.3% of combiners improved their blood pressure status at follow-up, versus 18.8% of continuers and 8.7% of discontinuers (p < 0.001). Conversely, almost one third (28.3%) of discontinuers became hypertensive (systolic ≥140 mm Hg or diastolic ≥90 mm Hg), vs. 22.1% of continuers, 16.3% of switchers and 11.5% of combiners (p < 0.001). Multivariate analysis showed baseline uncontrolled hypertension, ARBs, drug regimen (monotherapy/polytherapy) and overweight/obesity to be associated with changes in antihypertensive therapy. CONCLUSION: In Switzerland, ARBs have replaced diuretics as the most commonly prescribed antihypertensive drug. Uncontrolled hypertension, ARBs, drug regimen (monotherapy or polytherapy) and overweight/obesity are associated with changes in antihypertensive treatment.
Resumo:
Today, perhaps without their realization, Iowans are factoring climate change into their lives and activities. Current farming practices and flood mitigation efforts, for example, are reflecting warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual stream flows, and more frequent severe precipitation events (Fig. 1) than were prevalent during the past 50 years. Some of the effects of these changes (such as longer growing season) may be positive, while others (particularly the tendency for greater precipitation events that lead to flooding) are negative. Climate change embodies all of these results and many more in a complex manner. The Iowa legislature has been proactive in seeking advice about climate change and its impacts on our state. In 2007, Governor Culver and the Iowa General Assembly enacted Senate File 485 and House File 2571 to create the Iowa Climate Change Advisory Council (ICCAC). ICCAC members reported an emissions inventory and a forecast for Iowa’s greenhouse gases (GHGs), policy options for reducing Iowa’s GHG, and two scenarios charting GHG reductions of 50% and 90% by 2050 from a baseline of 2005. Following issuance of the final report in December 2008, the General Assembly enacted a new bill in 2009 (Sec. 27, Section 473.7, Code 2009 amended) that set in motion a review of climate change impacts and policies in Iowa. This report is the result of that 2009 bill. It continues the dialogue between Iowa’s stakeholders, scientific community, and the state legislature that was begun with these earlier reports.
Resumo:
RESUME Les évidences montrant que les changements globaux affectent la biodiversité s'accumulent. Les facteurs les plus influant dans ce processus sont les changements et destructions d'habitat, l'expansion des espèces envahissantes et l'impact des changements climatiques. Une évaluation pertinente de la réponse des espèces face à ces changements est essentielle pour proposer des mesures permettant de réduire le déclin actuel de la biodiversité. La modélisation de la répartition d'espèces basée sur la niche (NBM) est l'un des rares outils permettant cette évaluation. Néanmoins, leur application dans le contexte des changements globaux repose sur des hypothèses restrictives et demande une interprétation critique. Ce travail présente une série d'études de cas investiguant les possibilités et limitations de cette approche pour prédire l'impact des changements globaux. Deux études traitant des menaces sur les espèces rares et en danger d'extinction sont présentées. Les caractéristiques éco-géographiques de 118 plantes avec un haut degré de priorité de conservation sont revues. La prévalence des types de rareté sont analysées en relation avec leur risque d'extinction UICN. La revue souligne l'importance de la conservation à l'échelle régionale. Une évaluation de la rareté à échelle globale peut être trompeuse pour certaine espèces car elle ne tient pas en compte des différents degrés de rareté que présente une espèce à différentes échelles spatiales. La deuxième étude test une approche pour améliorer l'échantillonnage d'espèces rares en incluant des phases itératives de modélisation et d'échantillonnage sur le terrain. L'application de l'approche en biologie de la conservation (illustrée ici par le cas du chardon bleu, Eryngium alpinum), permettrait de réduire le temps et les coûts d'échantillonnage. Deux études sur l'impact des changements climatiques sur la faune et la flore africaine sont présentées. La première étude évalue la sensibilité de 227 mammifères africains face aux climatiques d'ici 2050. Elle montre qu'un nombre important d'espèces pourrait être bientôt en danger d'extinction et que les parcs nationaux africains (principalement ceux situé en milieux xériques) pourraient ne pas remplir leur mandat de protection de la biodiversité dans le futur. La seconde étude modélise l'aire de répartition en 2050 de 975 espèces de plantes endémiques du sud de l'Afrique. L'étude propose l'inclusion de méthodes améliorant la prédiction des risques liés aux changements climatiques. Elle propose également une méthode pour estimer a priori la sensibilité d'une espèce aux changements climatiques à partir de ses propriétés écologiques et des caractéristiques de son aire de répartition. Trois études illustrent l'utilisation des modèles dans l'étude des invasions biologiques. Une première étude relate l'expansion de la laitue sáuvage (Lactuca serriola) vers le nord de l'Europe en lien avec les changements du climat depuis 250 ans. La deuxième étude analyse le potentiel d'invasion de la centaurée tachetée (Centaures maculosa), une mauvaise herbe importée en Amérique du nord vers 1890. L'étude apporte la preuve qu'une espèce envahissante peut occuper une niche climatique différente après introduction sur un autre continent. Les modèles basés sur l'aire native prédisent de manière incorrecte l'entier de l'aire envahie mais permettent de prévoir les aires d'introductions potentielles. Une méthode alternative, incluant la calibration du modèle à partir des deux aires où l'espèce est présente, est proposée pour améliorer les prédictions de l'invasion en Amérique du nord. Je présente finalement une revue de la littérature sur la dynamique de la niche écologique dans le temps et l'espace. Elle synthétise les récents développements théoriques concernant le conservatisme de la niche et propose des solutions pour améliorer la pertinence des prédictions d'impact des changements climatiques et des invasions biologiques. SUMMARY Evidences are accumulating that biodiversity is facing the effects of global change. The most influential drivers of change in ecosystems are land-use change, alien species invasions and climate change impacts. Accurate projections of species' responses to these changes are needed to propose mitigation measures to slow down the on-going erosion of biodiversity. Niche-based models (NBM) currently represent one of the only tools for such projections. However, their application in the context of global changes relies on restrictive assumptions, calling for cautious interpretations. In this thesis I aim to assess the effectiveness and shortcomings of niche-based models for the study of global change impacts on biodiversity through the investigation of specific, unsolved limitations and suggestion of new approaches. Two studies investigating threats to rare and endangered plants are presented. I review the ecogeographic characteristic of 118 endangered plants with high conservation priority in Switzerland. The prevalence of rarity types among plant species is analyzed in relation to IUCN extinction risks. The review underlines the importance of regional vs. global conservation and shows that a global assessment of rarity might be misleading for some species because it can fail to account for different degrees of rarity at a variety of spatial scales. The second study tests a modeling framework including iterative steps of modeling and field surveys to improve the sampling of rare species. The approach is illustrated with a rare alpine plant, Eryngium alpinum and shows promise for complementing conservation practices and reducing sampling costs. Two studies illustrate the impacts of climate change on African taxa. The first one assesses the sensitivity of 277 mammals at African scale to climate change by 2050 in terms of species richness and turnover. It shows that a substantial number of species could be critically endangered in the future. National parks situated in xeric ecosystems are not expected to meet their mandate of protecting current species diversity in the future. The second study model the distribution in 2050 of 975 endemic plant species in southern Africa. The study proposes the inclusion of new methodological insights improving the accuracy and ecological realism of predictions of global changes studies. It also investigates the possibility to estimate a priori the sensitivity of a species to climate change from the geographical distribution and ecological proprieties of the species. Three studies illustrate the application of NBM in the study of biological invasions. The first one investigates the Northwards expansion of Lactuca serriola L. in Europe during the last 250 years in relation with climate changes. In the last two decades, the species could not track climate change due to non climatic influences. A second study analyses the potential invasion extent of spotted knapweed, a European weed first introduced into North America in the 1890s. The study provides one of the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. Models fail to predict the current full extent of the invasion, but correctly predict areas of introduction. An alternative approach, involving the calibration of models with pooled data from both ranges, is proposed to improve predictions of the extent of invasion on models based solely on the native range. I finally present a review on the dynamic nature of ecological niches in space and time. It synthesizes the recent theoretical developments to the niche conservatism issues and proposes solutions to improve confidence in NBM predictions of the impacts of climate change and species invasions on species distributions.
Resumo:
Background: Interventions designed to increase workplace physical activity may not automatically reduce high volumes of sitting, a behaviour independently linked to chronic diseases such as obesity and type II diabetes. This study compared the impact two different walking strategies had on step counts and reported sitting times. Methods: Participants were white-collar university employees (n = 179; age 41.3 ± 10.1 years; 141 women), who volunteered and undertook a standardised ten-week intervention at three sites. Preintervention step counts (Yamax SW-200) and self-reported sitting times were measured over five consecutive workdays. Using pre-intervention step counts, employees at each site were randomly allocated to a control group (n = 60; maintain normal behaviour), a route-based walking group (n = 60; at least 10 minutes sustained walking each workday) or an incidental walking group (n = 59; walking in workday tasks). Workday step counts and reported sitting times were re-assessed at the beginning, mid- and endpoint of intervention and group mean± SD steps/day and reported sitting times for pre-intervention and intervention measurement points compared using a mixed factorial ANOVA; paired sample-t-tests were used for follow-up, simple effect analyses. Results: A significant interactive effect (F = 3.5; p < 0.003) was found between group and step counts. Daily steps for controls decreased over the intervention period (-391 steps/day) and increased for route (968 steps/day; t = 3.9, p < 0.000) and incidental (699 steps/day; t = 2.5, p < 0.014) groups. There were no significant changes for reported sitting times, but average values did decrease relative to the control (routes group = 7 minutes/day; incidental group = 15 minutes/day). Reductions were most evident for the incidental group in the first week of intervention, where reported sitting decreased by an average of 21 minutes/day (t = 1.9; p < 0.057). Conclusion: Compared to controls, both route and incidental walking increased physical activity in white-collar employees. Our data suggests that workplace walking, particularly through incidental movement, also has the potential to decrease employee sitting times, but there is a need for on-going research using concurrent and objective measures of sitting, standing and walking.
Resumo:
The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.
Resumo:
Hispanics are a large and growing part of the United States workforce. Projections of the U.S. Census Bureau (2001) state that, by the year 2050, Hispanics will account for 25% of the population. For the Midwest in particular, the Hispanic population is expected to increase 35% by the year 2025. The construction industry is expected to experience a greater percentage increase of its Hispanic population, due to the labor-intensive nature of the industry. This study addresses the expected increase of Hispanic workers in the construction industry by testing the best approaches for delivering training to construction crews with Hispanic workers as well as American supervisors and laborers in the state of Iowa. The research methodology consisted of assessing the effects on communication, safety, work environment, and productivity as a result of the integration training. Results show that integration on-site training decreases workers’ desire to move and increases quality of work and productivity. Most importantly, experimental design was used to show the increasing levels of direct construction communication due to the Toolbox Integration Course for Hispanic Workers and American Supervisors (TICHA) designed as part of this project. This study recommends the creation of a quasi-governmental or association program that can offer continuous research and training that can benefit the construction industry as well as society as a whole. The industry involvement in this process is crucial for contractors. Not only do contractors benefit from reduced insurance premiums when workers act safely, but workers with better communication skills are more productive.
Resumo:
We modelled the future distribution in 2050 of 975 endemic plant species in southern Africa distributed among seven life forms, including new methodological insights improving the accuracy and ecological realism of predictions of global changes studies by: (i) using only endemic species as a way to capture the full realized niche of species, (ii) considering the direct impact of human pressure on landscape and biodiversity jointly with climate, and (iii) taking species' migration into account. Our analysis shows important promises for predicting the impacts of climate change in conjunction with land transformation. We have shown that the endemic flora of Southern Africa on average decreases with 41% in species richness among habitats and with 39% on species distribution range for the most optimistic scenario. We also compared the patterns of species' sensitivity with global change across life forms, using ecological and geographic characteristics of species. We demonstrate here that species and life form vulnerability to global changes can be partly explained according to species' (i) geographical distribution along climatic and biogeographic gradients, like climate anomalies, (ii) niche breadth or (iii) proximity to barrier preventing migration. Our results confirm that the sensitivity of a given species to global environmental changes depends upon its geographical distribution and ecological proprieties, and makes it possible to estimate a priori its potential sensitivity to these changes.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
Despite global environmental governance has traditionally couched global warming in terms of annual CO2 emissions (a flow), global mean temperature is actually determined by cumulative CO2 emissions in the atmosphere (a stock). Thanks to advances of scientific community, nowadays it is possible to quantify the \global carbon budget", that is, the amount of available cumulative CO2 emissions before crossing the 2oC threshold (Meinshausen et al., 2009). The current approach proposes to analyze the allocation of such global carbon budget among countries as a classical conflicting claims problem (O'Neill, 1982). Based on some appealing principles, it is proposed an efficient and sustainable allocation of the available carbon budget from 2000 to 2050 taking into account different environmental risk scenarios. Keywords: Carbon budget, Conflicting claims problem, Distribution, Climate change. JEL classification: C79, D71, D74, H41, H87, Q50, Q54, Q58.
Resumo:
The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner.
Resumo:
We estimate how climate variables affect price and acreage of productive farmland using the Ricardian approach. Furthermore, we use our estimations to evaluate the joint effects of possible cli- mate changes within the time horizon of 2010 and 2050. Our results show that the price of rainfed land in Spain tends to increase but rainfed acreage decreases. On the other hand, the effect on irrigated farmland price and acreage presents some mixed results, however, in the long run the dominant pattern is clearly increasing for both prices and acreage.