937 resultados para embryonic development
Resumo:
The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.
Resumo:
Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.
Resumo:
When the male is the heterogametic sex (XX♀-XY♂ or XX♀-XO♂), as inDrosophila, orthopteran insects, mammals andCaenorhabditis elegans, X-linked genes are subject to dosage compensation: the single X in the male is functionally equivalent to the two Xs in the female. However, when the female is heterogametic (ZZ♂-ZW♀), as in birds, butterflies and moths, Z-linked genes are apparently not dosage-compensated. This difference between X-linked and Z-linked genes raises fundamental questions about the role of dosage compensation. It is argued that (i) genes which require dosage compensation are primarily those that control morphogenesis and the prospective body plan; (ii) the products of these genes are required in disomic doses especially during oogenesis and early embryonic development; (iii) heterogametic females synthesize and store during oogenesis itself morphogenetically essential gene products - including those encoded by Z-linked genes — in large quantities; (iv) the abundance of these gene products in the egg and their persistence relatively late into embryogenesis enables heterogametic females to overcome the monosomic state of the Z chromosome in ZW embryos. Female heterogamety is predominant in birds, reptiles and amphibians, all of which have megalecithal eggs containing several thousand times more maternal RNA and other maternal messages than eggs of mammals,Caenorhabditis elegans, orDrosophila. This increase in egg size, yolk content and, concomitantly, the size of the maternal legacy to the embryo, may have facilitated female heterogamety and the absence of dosage compensation.
Resumo:
Background: Phosphorylation by protein kinases is central to cellular signal transduction. Abnormal functioning of kinases has been implicated in developmental disorders and malignancies. Their activity is regulated by second messengers and by the binding of associated domains, which are also influential in translocating the catalytic component to their substrate sites, in mediating interaction with other proteins and carrying out their biological roles. Results: Using sensitive profile-search methods and manual analysis, the human genome has been surveyed for protein kinases. A set of 448 sequences, which show significant similarity to protein kinases and contain the critical residues essential for kinase function, have been selected for an analysis of domain combinations after classifying the kinase domains into subfamilies. The unusual domain combinations in particular kinases suggest their involvement in ubiquitination pathways and alternative modes of regulation for mitogen-activated protein kinase kinases (MAPKKs) and cyclin-dependent kinase (CDK)-like kinases. Previously unexplored kinases have been implicated in osteoblast differentiation and embryonic development on the basis of homology with kinases of known functions from other organisms. Kinases potentially unique to vertebrates are involved in highly evolved processes such as apoptosis, protein translation and tyrosine kinase signaling. In addition to coevolution with the kinase domain, duplication and recruitment of non-catalytic domains is apparent in signaling domains such as the PH, DAG-PE, SH2 and SH3 domains. Conclusions: Expansion of the functional repertoire and possible existence of alternative modes of regulation of certain kinases is suggested by their uncommon domain combinations. Experimental verification of the predicted implications of these kinases could enhance our understanding of their biological roles.
Resumo:
Extensive and indiscriminate use of synthetic compounds and natural compounds obtained from plant sources have resulted in serious threats to the aquatic ecosystem and human health. Aqueous extract of the root of the plant, Milletia pachycarpa Benth, is currently used for killing fish in the state of Manipur, India. Moreover, this plant is also used as traditional medicine in this region. Although it is widely used in traditional medicine, there is limited information available regarding the adverse effects and mechanism underlying its toxicity. This study examined the effects of exposure to aqueous extract of M. pachycarpa (AEMP) on early embryonic development of zebrafish embryos and mechanisms underlying toxicity. Zebrafish embryos treated with different concentrations of the AEMP produced embryonic lethality and developmental defects. The 96-hr-LC50 of AEMP was found to be 4.276 mu g/mL. Further, multiple developmental abnormalities such as pericardial edema, yolk sac edema, spinal curvature, swim bladder deflation, decreased heart rate, and delayed hatching were also observed in a dose-dependent manner. Zebrafish embryo showing moderate-to-severe developmental defects following AEMP exposure cannot swim properly. Further, this study examined oxidative stress and apoptosis in embryos exposed to AEMP. Enhanced production of ROS and apoptosis was found in brain, trunk, and tail of zebrafish embryos treated with AEMP. Data suggest that oxidative stress and apoptosis are associated with AEMP-induced embryonic lethality and developmental toxicity in zebrafish embryos.
Resumo:
El pez cebra (Danio rerio) se utiliza como organismo modelo en distintos campos como la biomedicina o la toxicogenómica. Las ventajas que ofrece frente a otros modelos animales, hace que se haya convertido en los últimos años en uno de los organismos modelo más utilizado en experimentación. La similitud de su desarrollo embrionario con el de otros vertebrados superiores o la semejanza de su genoma con la del ser humano lo han colocado en el punto de mira de las principales investigaciones. Pero disponer de ejemplares óptimos tanto de embriones como de adultos para su utilización en investigación, requiere de unos cuidados y de una atención adecuada. Para su mantenimiento se deberán tener en cuenta el tipo de instalaciones para su cría, la calidad del agua donde se encuentran, la alimentación que reciben o los procesos de reproducción utilizados. El objetivo de este estudio ha sido elaborar un protocolo de mantenimiento del pez cebra, que optimice los cuidados necesarios para que el número de embriones viables sea máximo y también poder mantener un número de ejemplares adultos en buenas condiciones.
Resumo:
Female reproduction in penaeid shrimp is carefully regulated by several different endocrine factors. Their precise modes of action have not yet been fully elucidated. Three endocrine factors, each representing a different chemical class of hormones, have been investigated in the penaeid shrimp Sicyonia ingentis in our laboratory: ecdysteroids, vitellogenesis-inhibiting hormone (VIH) , and methyl farnesoate (MF). Ecdysteroids (the steroid molting hormones of arthropods; predominantly 20-hydroxyecdysone), are initially present in low levels (<10 ng/mg) in shrimp embryos. As development of the embryos nears time of hatch, the ecdysteroid levels increase to approximately 150 ng/ mg, indicating that they may be of embryonic origin and involved in embryonic development. An assay was developed for shrimp VIH, which presumably is a protein. Delay of onset of the next reproductive cycle was observed following injection of sinus gland extracts into shrimp that had previously had their eyestalks removed. A photoaffinity analog was synthesized for the putative shrimp reproductive hormone MF-a terpenoid. This analog, farnesyl diazomethyl ketone (FDK) , was used to demonstrate the presence of specific binding proteins for MF in shrimp hemolymph. (PDF file contains 136 pages.)
Resumo:
Zebrafish (Danio rerio) embryos have been used to quantify the teratogenic potential of environmental samples and harmful substances respectively. The short spawning interval renders this species a good test organism in toxicological research. Due to the transparency of the eggs several lethal and non-lethal endpoints can be detected in parallel after 48 h of embryonic development. Zebrafishembryos have been shown to be sensitive to a number of environmental relevant contaminants, as well as to ex-tracts from polluted sediments
Resumo:
During early stages of Drosophila development the heat shock response cannot be induced. It is reasoned that the adverse effects on cell cycle and cell growth brought about by Hsp70 induction must outweigh the beneficial aspects of Hsp70 induction in the early embryo. Although the Drosophila heat shock transcription factor (dHSF) is abundant in the early embryo, it does not enter the nucleus in response to heat shock. In older embryos and in cultured cells the factor is localized within the nucleus in an apparent trimeric structure that binds DNA with high affinity. The domain responsible for nuclear localization upon stress resides between residues 390 and 420 of the dHSF. Using that domain as bait in a yeast two-hybrid system we now report the identification and cloning of a nuclear transport protein Drosophila karyopherin-α3(dKap- α3). Biochemical methods demonstrate that the dKap-α3 protein binds specifically to the dHSF's nuclear localization sequence (NLS). Furthermore, the dKap-α3 protein does not associate with NLSs that contain point mutations which are not transported in vivo. Nuclear docking studies also demonstrate specific nuclear targeting of the NLS substrate by dKap-α3.Consistant with previous studies demonstrating that early Drosophila embryos are refractory to heat shock as a result of dHSF nuclear exclusion, we demonstrate that the early embryo is deficient in dKap-α3 protein through cycle 12. From cycle 13 onward the transport factor is present and the dHSF is localized within the nucleus thus allowing the embryo to respond to heat shock.
The pair-rule gene fushi tarazu (ftz) is a well-studied zygotic segmentation gene that is necessary for the development of the even-numbered parasegments in Drosophila melanogastor. During early embryogenesis, ftz is expressed in a characteristic pattern of seven stripes, one in each of the even-numbered parasegments. With a view to understand how ftz is transcriptionally regulated, cDNAs that encode transcription factors that bind to the zebra element of the ftz promoter have been cloned. Chapter Ill reports the cloning and characterization of the eDNA encoding zeb-1 (zebra element binding protein), a novel steroid receptor-like molecule that specifically binds to a key regulatory element of the ftz promoter. In transient transfection assays employing Drosophila tissue culture cells, it has been shown that zeb-1 as well as a truncated zeb-1 polypeptide (zeb480) that lacks the putative ligand binding domain function as sequencespecific trans-activators of the ftz gene.
The Oct factors are members of the POU family of transcription factors that are shown to play important roles during development in mammals. Chapter IV reports the eDNA cloning and expression of a Drosophila Oct transcription factor. Whole mount in-situ hybridization experiments revealed that the spatial expression patterns of this gene during embryonic development have not yet been observed for any other gene. In early embryogenesis, its transcripts are transiently expressed as a wide uniform band from 20-40% of the egg length, very similar to that of gap genes. This pattern progressively resolves into a series of narrower stripes followed by expression in fourteen stripes. Subsequently, transcripts from this gene are expressed in the central nervous system and the brain. When expressed in the yeast Saccharomyces cerevisiae, this Drosophila factor functions as a strong, octamer-dependent activator of transcription. The data strongly suggest possible functions for the Oct factor in pattern formation in Drosophila that might transcend the boundaries of genetically defined segmentation genes.
Resumo:
We investigated developmental changes in the body compositions and fatty acid (FA) profiles of embryos and preparturition larvae of the quillback rockfish (Sebastes maliger). Comparisons of proximate composition data from early-stage embryos with data from hatched preparturition larvae taken from wild-caught gravid females indicated that embryos gain over one-third their weight in moisture while consuming 20% of their dry tissue mass for energy as they develop into larvae. Lipid contributed 60% of the energy consumed and was depleted more rapidly than protein, indicating a protein-sparing effect. Oil globule volume was strongly correlated with lipid levels, affirming its utility as an indicator of energetic status. FA profiles of early embryos differed significantly from those of hatched larvae. Differences in the relative abundances of FAs between early embryos and hatched larvae indicated different FA depletion rates during embryonic development. We conclude that some metabolically important FAs may prove useful in assessing the condition of embryos and preparturition larvae, particularly 20:4n-6, which cannot be synthesized by many marine fish and which is conserved during embryogenesis. Variability in body composition and energy use among rockfish species should be considered when interpreting any measures of condition.
Resumo:
A nursery site for the Alaska skate (Bathyraja parmifera) was sampled seasonally from June 2004 to July 2005. At the small nursery site (~2 km2), located in a highly productive area near the shelf-slope interface at the head of Bering Canyon in the eastern Bering Sea, reproductive males and females dominated the catch and neonate and juvenile skates were rare. Seasonal samples showed summertime (June and July) as the peak reproductive time in the nursery although some reproduction occurred throughout the year. Timeseries analysis of embryo length frequencies revealed that three cohorts were developing simultaneously and the period of embryonic development was estimated at 3.5 years and average embryo growth rate at 0.2 mm/day. Estimated egg case deposition occurred mainly during summertime and hatching occurred during winter months. Protracted hatching times may be common for oviparous elasmobranch species and may be directly correlated with ambient temperatures as evident from a meta-data analysis. Evidence indicates that the Alaska skate uses the eastern Bering Sea outer continental shelf region for reproduction and the middle and inner shelf regions as habitat for immature and subadults. Skate nurseries may be vulnerable to disturbances because they are located in highly productive areas and because embryos develop slowly.
Resumo:
The timing and duration of the reproductive cycle of Atka mackerel (Pleurogrammus monopterygius) was validated by using observations from time-lapse video and data from archival tags, and the start, peak, and end of spawning and hatching were determined from an incubation model with aged egg samples and empirical incubation times ranging from 44 days at a water temperature of 9.85°C to 100 days at 3.89°C. From June to July, males ceased diel vertical movements, aggregated in nesting colonies, and established territories. Spawning began in late July, ended in mid-October, and peaked in early September. The male egg-brooding period that followed continued from late November to mid-January and duration was highly dependent on embryonic development as affected by ambient water temperature. Males exhibited brooding behavior for protracted periods at water depths from 23 to 117 m where average daily water temperatures ranged from 4.0° to 6.2°C. Knowledge about the timing of the reproductive cycle provides a framework for conserving Atka mackerel populations and investigating the physical and biological processes influencing recruitment.
Resumo:
A semi-arid environment is a major constraint for production of carp seed through hypophysation. At a water temperature above 31 degree C fishes often fail to respond to induced breeding or produce partial or full eggs with fairly less fertilization, leading to their mortality during embryonic development. Field trials with Labee rohita and Cyprinus carpio communis prove that hypophysation followed by stripping and hatching in a water medium with reduced temperature (below 31 degree C) through controlled use of ice-water and water showers can result in 50-60% fertilization of eggs and 50-72% hatching for L. rohita, and 40-90% fertilization and 49-77% hatching for C. carpio communis. Simultaneous breeding experiments of the species in normal water temperature (>31 degree C) showed negative results.
Resumo:
Vertebrate RACK1 plays a key role in embryonic development. This paper described the cloning, phylogenetic analysis and developmental expression of AmphiRACK1, the RACK1 homologous gene in amphioxus. Phylogenetic analysis indicated that amphioxus RACK1 wa
Resumo:
Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in th