999 resultados para element toxicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study design Retrospective validation study. Objectives To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1–T12 and T4–T12 kyphosis, L1–L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study greatly enhanced our knowledge of the potential for geothermal energy development in Queensland as a viable clean energy source in the coming decades. Key outcomes of the project were understanding the first-order controls on the concentration of the heat-producing elements: uranium, thorium and potassium in granitic rocks, and constraining where rocks with the greatest heat-producing potential lie at depth in Queensland. Importantly, new temperature and heat flow maps for southwest Queensland were developed that will greatly assist future exploration efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. Our novel patient specific modelling software creates individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We have recently applied the model to investigate the influence of increasing magnitudes of surgically applied corrective force on predicted deformity correction...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to identify current knowledge gaps in fate, exposure, and toxicity of engineered nanomaterials (ENMs), highlight research gaps, and suggest future research directions. Humans and other living organisms are exposed to ENMs during production or use of products containing them. To assess the hazards of ENMs, it is important to assess their physiochemical properties and try to relate them to any observed hazard. However, the full determination of these relationships is currently limited by the lack of empirical data. Moreover, most toxicity studies do not use realistic environmental exposure conditions for determining dose-response parameters, affecting the accurate estimation of health risks associated with the exposure to ENMs. Regulatory aspects of nanotechnology are still developing and are currently the subject of much debate. Synthesis of available studies suggests a number of open questions. These include (i) developing a combination of different analytical methods for determining ENM concentration, size, shape, surface properties, and morphology in different environmental media, (ii) conducting toxicity studies using environmentally relevant exposure conditions and obtaining data relevant to developing quantitative nanostructure-toxicity relationships (QNTR), and (iii) developing guidelines for regulating exposure of ENMs in the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we aim at predicting protein structural classes for low-homology data sets based on predicted secondary structures. We propose a new and simple kernel method, named as SSEAKSVM, to predict protein structural classes. The secondary structures of all protein sequences are obtained by using the tool PSIPRED and then a linear kernel on the basis of secondary structure element alignment scores is constructed for training a support vector machine classifier without parameter adjusting. Our method SSEAKSVM was evaluated on two low-homology datasets 25PDB and 1189 with sequence homology being 25% and 40%, respectively. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies on these two data sets are 86.3% and 84.5%, respectively, which are higher than those obtained by other existing methods. Especially, our method achieves higher accuracies (88.1% and 88.5%) for differentiating the α + β class and the α/β class compared to other methods. This suggests that our method is valuable to predict protein structural classes particularly for low-homology protein sequences. The source code of the method in this paper can be downloaded at http://math.xtu.edu.cn/myphp/math/research/source/SSEAK_source_code.rar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element analysis (FEA) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was develop d only with the plastic material model. The outcomes of force versus time curves obtained from FEA models followed similar pattern to the experimental curves however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modelling were used to develop material model for peel and flesh tissues in FEA modelling of mechanical peeling of tough skinned vegetables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription of tRNA genes by RNA polymerase III is controlled by the internal conserved sequences within the coding region and the immediate upstream flanking sequences. A highly transcribed copy of glycyl tRNA gene tRNA1(Gly)-1 from Bombyx mori is down regulated by sequences located much farther upstream in the region -150 to -300 nucleotides (nt), with respect to the +1 nt of tRNA. The negative regulatory effect has been narrowed down to a sequence motif 'TATATAA', a perfect consensus recognised by the TATA binding protein, TBP. This sequence element, when brought closer to the transcription start point, on the other hand, exerts a positive effect by promoting transcription of the gene devoid of other cis regulatory elements. The identity of the nuclear protein interacting with this 'TATATAA' element to TBP has been established by antibody and mutagenesis studies. The 'TATATAA' element thus influences the transcription of tRNA genes positively or negatively in a position-dependent manner either by recruitment or sequestration of TBP from the transcription machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and practical technique for the discrete representation of reinforcement in two-dimensional boundary element analysis of reinforced concrete structural elements is presented. The bond developed over the surface of contact between the reinforcing steel and concrete is represented using fictitious one-dimensional spring elements. Potentials of the model developed are demonstrated using a number of numerical examples. The results are seen to be in good agreement with the results obtained using standard finite element software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne organic pollutants have significant impacts on health; however their sources, atmospheric characteristics and resulting human exposures are poorly understood. This research characterized chemical composition of atmospheric volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyls in representative number of primary schools in Brisbane Metropolitan Area, quantified their concentrations, assessed their toxicity and apportioned them to their sources. The findings expand scientific knowledge of these pollutants, and will contribute towards science based management of risks associated with pollution emissions and air quality in schools and other urban and indoor environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.