769 resultados para elbow flexion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Clinicians use exercises in rehabilitation to enhance sensorimotor-function, however evidence supporting their use is scarce. Objective: To evaluate acute effects of handheld-vibration on joint position sense (JPS). Design: A repeated-measure, randomized, counter-balanced 3-condition design. Setting: Sports Medicine and Science Research Laboratory. Patients or Other Participants: 31 healthy college-aged volunteers (16-males, 15-females; age=23+3y, mass=76+14kg, height=173+8cm). Interventions: We measured elbow JPS and monitored training using the Flock-of-Birds system (Ascension Technology, Burlington, VT) and MotionMonitor software (Innsport, Chicago, IL), accurate to 0.5°. For each condition (15,5,0Hz vibration), subjects completed three 15-s bouts holding a 2.55kg Mini-VibraFlex dumbbell (Orthometric, New York, NY), and used software-generated audio/visual biofeedback to locate the target. Participants performed separate pre- and post-test JPS measures for each condition. For JPS testing, subjects held a non-vibrating dumbbell, identified the target (90°flexion) using biofeedback, and relaxed 3-5s. We removed feedback and subjects recreated the target and pressed a trigger. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to perform separate ANOVAs (p<0.05) for each protocol and calculated effect sizes using standard-mean differences. Main Outcome Measures: Dependent variables were absolute and variable error between target and reproduced angles, pre-post vibration training. Results: 0Hz (F1,61=1.310,p=0.3) and 5Hz (F1,61=2.625,p=0.1) vibration did not affect accuracy. 15Hz vibration enhanced accuracy (6.5±0.6 to 5.0±0.5°) (F1,61=8.681,p=0.005,ES=0.3). 0Hz did not affect variability (F1,61=0.007,p=0.9). 5Hz vibration decreased variability (3.0±1.8 to 2.3±1.3°) (F1,61=7.250,p=0.009), as did 15Hz (2.8±1.8 to 1.8±1.2°) (F1,61=24.027, p<0.001). Conclusions: Our results support using handheld-vibration to improve sensorimotor-function. Future research should include injured subjects, functional multi-joint/multi-planar measures, and long-term effects of similar training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La déchirure de la coiffe des rotateurs est une des causes les plus fréquentes de douleur et de dysfonctionnement de l'épaule. La réparation chirurgicale est couramment réalisée chez les patients symptomatiques et de nombreux efforts ont été faits pour améliorer les techniques chirurgicales. Cependant, le taux de re-déchirure est encore élevé ce qui affecte les stratégies de réhabilitation post-opératoire. Les recommandations post-chirurgicales doivent trouver un équilibre optimal entre le repos total afin de protéger le tendon réparé et les activités préconisées afin de restaurer l'amplitude articulaire et la force musculaire. Après une réparation de la coiffe, l'épaule est le plus souvent immobilisée grâce à une écharpe ou une orthèse. Cependant, cette immobilisation limite aussi la mobilité du coude et du poignet. Cette période qui peut durer de 4 à 6 semaines où seuls des mouvements passifs peuvent être réalisés. Ensuite, les patients sont incités à réaliser les exercices actifs assistés et des exercices actifs dans toute la mobilité articulaire pour récupérer respectivement l’amplitude complète de mouvement actif et se préparer aux exercices de résistance réalisés dans la phase suivante de la réadaptation. L’analyse électromyographique des muscles de l'épaule a fourni des évidences scientifiques pour la recommandation de beaucoup d'exercices de réadaptation au cours de cette période. Les activités sollicitant les muscles de la coiffe des rotateurs à moins de 20% de leur activation maximale volontaire sont considérés sécuritaires pour les premières phases de la réhabilitation. À partir de ce concept, l'objectif de cette thèse a été d'évaluer des activités musculaires de l'épaule pendant des mouvements et exercices qui peuvent théoriquement être effectués au cours des premières phases de la réhabilitation. Les trois questions principales de cette thèse sont : 1) Est-ce que la mobilisation du coude et du poignet produisent une grande activité des muscles de la coiffe? 2) Est-ce que les exercices de renforcement musculaire du bras, de l’avant-bras et du torse produisent une grande activité dans les muscles de la coiffe? 3) Au cours d'élévations actives du bras, est-ce que le plan d'élévation affecte l'activité de la coiffe des rotateurs? Dans notre première étude, nous avons évalué 15 muscles de l'épaule chez 14 sujets sains par électromyographie de surface et intramusculaire. Nos résultats ont montré qu’avec une orthèse d’épaule, les mouvements du coude et du poignet et même quelques exercices de renforcement impliquant ces deux articulations, activent de manière sécuritaire les muscles de ii la coiffe. Nous avons également introduit des tâches de la vie quotidienne qui peuvent être effectuées en toute sécurité pendant la période d'immobilisation. Ces résultats peuvent aider à modifier la conception d'orthèses de l’épaule. Dans notre deuxième étude, nous avons montré que l'adduction du bras réalisée contre une mousse à faible densité, positionnée pour remplacer le triangle d’une orthèse, produit des activations des muscles de la coiffe sécuritaires. Dans notre troisième étude, nous avons évalué l'électromyographie des muscles de l’épaule pendant les tâches d'élévation du bras chez 8 patients symptomatiques avec la déchirure de coiffe des rotateurs. Nous avons constaté que l'activité du supra-épineux était significativement plus élevée pendant l’abduction que pendant la scaption et la flexion. Ce résultat suggère une séquence de plan d’élévation active pendant la rééducation. Les résultats présentés dans cette thèse, suggèrent quelques modifications dans les protocoles de réadaptation de l’épaule pendant les 12 premières semaines après la réparation de la coiffe. Ces suggestions fournissent également des évidences scientifiques pour la production d'orthèses plus dynamiques et fonctionnelles à l’articulation de l’épaule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La déchirure de la coiffe des rotateurs est une des causes les plus fréquentes de douleur et de dysfonctionnement de l'épaule. La réparation chirurgicale est couramment réalisée chez les patients symptomatiques et de nombreux efforts ont été faits pour améliorer les techniques chirurgicales. Cependant, le taux de re-déchirure est encore élevé ce qui affecte les stratégies de réhabilitation post-opératoire. Les recommandations post-chirurgicales doivent trouver un équilibre optimal entre le repos total afin de protéger le tendon réparé et les activités préconisées afin de restaurer l'amplitude articulaire et la force musculaire. Après une réparation de la coiffe, l'épaule est le plus souvent immobilisée grâce à une écharpe ou une orthèse. Cependant, cette immobilisation limite aussi la mobilité du coude et du poignet. Cette période qui peut durer de 4 à 6 semaines où seuls des mouvements passifs peuvent être réalisés. Ensuite, les patients sont incités à réaliser les exercices actifs assistés et des exercices actifs dans toute la mobilité articulaire pour récupérer respectivement l’amplitude complète de mouvement actif et se préparer aux exercices de résistance réalisés dans la phase suivante de la réadaptation. L’analyse électromyographique des muscles de l'épaule a fourni des évidences scientifiques pour la recommandation de beaucoup d'exercices de réadaptation au cours de cette période. Les activités sollicitant les muscles de la coiffe des rotateurs à moins de 20% de leur activation maximale volontaire sont considérés sécuritaires pour les premières phases de la réhabilitation. À partir de ce concept, l'objectif de cette thèse a été d'évaluer des activités musculaires de l'épaule pendant des mouvements et exercices qui peuvent théoriquement être effectués au cours des premières phases de la réhabilitation. Les trois questions principales de cette thèse sont : 1) Est-ce que la mobilisation du coude et du poignet produisent une grande activité des muscles de la coiffe? 2) Est-ce que les exercices de renforcement musculaire du bras, de l’avant-bras et du torse produisent une grande activité dans les muscles de la coiffe? 3) Au cours d'élévations actives du bras, est-ce que le plan d'élévation affecte l'activité de la coiffe des rotateurs? Dans notre première étude, nous avons évalué 15 muscles de l'épaule chez 14 sujets sains par électromyographie de surface et intramusculaire. Nos résultats ont montré qu’avec une orthèse d’épaule, les mouvements du coude et du poignet et même quelques exercices de renforcement impliquant ces deux articulations, activent de manière sécuritaire les muscles de ii la coiffe. Nous avons également introduit des tâches de la vie quotidienne qui peuvent être effectuées en toute sécurité pendant la période d'immobilisation. Ces résultats peuvent aider à modifier la conception d'orthèses de l’épaule. Dans notre deuxième étude, nous avons montré que l'adduction du bras réalisée contre une mousse à faible densité, positionnée pour remplacer le triangle d’une orthèse, produit des activations des muscles de la coiffe sécuritaires. Dans notre troisième étude, nous avons évalué l'électromyographie des muscles de l’épaule pendant les tâches d'élévation du bras chez 8 patients symptomatiques avec la déchirure de coiffe des rotateurs. Nous avons constaté que l'activité du supra-épineux était significativement plus élevée pendant l’abduction que pendant la scaption et la flexion. Ce résultat suggère une séquence de plan d’élévation active pendant la rééducation. Les résultats présentés dans cette thèse, suggèrent quelques modifications dans les protocoles de réadaptation de l’épaule pendant les 12 premières semaines après la réparation de la coiffe. Ces suggestions fournissent également des évidences scientifiques pour la production d'orthèses plus dynamiques et fonctionnelles à l’articulation de l’épaule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusionless scoliosis surgery is an emerging treatment for idiopathic scoliosis as it offers theoretical advantages over current forms of treatment. Currently the treatment options for idiopathic scoliosis are observation, bracing and fusion. While brace treatment is non-invasive, and preserves the growth, motion, and function of the spine, it does not correct deformity and is only modestly successful in preventing curve progression. In adolescents who fail brace treatment, surgical treatment with an instrumented spinal fusion usually results in better deformity correction but is associated with substantially greater risk. Furthermore in younger patients requiring surgical treatment, fusion procedures are known to adversely effect the future growth of the chest and spine. Fusionless treatments have been developed to allow effective surgical treatment of patients with idiopathic scoliosis who are too young for fusion procedures. Anterior vertebral stapling is one such fusionless treatment which aims to modulate the growth of vertebra to allow correction of scoliosis whilst maintaining normal spinal motion The Mater Misericordiae Hospital in Brisbane has begun to use anterior vertebral stapling to treat patients with idiopathic scoliosis who are too young for fusion procedures. Currently the only staple approved for clinical use is manufactured by Medtronic Sofamor Danek (Memphis, TN). This thesis explains the biomechanical and anatomical changes that occur following anterior vertebral staple insertion using in vitro experiments performed on an immature bovine model. Currently there is a paucity of published information about anterior vertebral stapling so it is hoped that this project will provide information that will aid in our understanding of the clinical effects of staple insertion. The aims of this experimental study were threefold. The first phase was designed to determine the changes in the bending stiffness of the spine following staple insertion. The second phase was designed to measure the forces experienced by the staple during spinal movements. The third and final phase of testing was designed to describe the structural changes that occur to a vertebra as a consequence of staple insertion. The first phase of testing utilised a displacement controlled testing robot to compare the change in stiffness of a single spinal motion segment following staple insertion for the three basic spinal motions of flexion-extension, lateral bending, and axial rotation. For the second phase of testing strain gauges were attached to staples and used to measure staple forces during spinal movement. In the third and final phase the staples were removed and a testing specimen underwent micro-computed tomography (CT) scanning to describe the anatomical changes that occur following staple insertion. The displacement controlled testing showed that there was a significant decrease in bending stiffness in flexion, extension, lateral bending away from the staple, and axial rotation away from the staple following staple insertion. The strain gauge measurements showed that the greatest staple forces occurred in flexion and the least in extension. In addition, a reduction in the baseline staple compressive force was seen with successive loading cycles. Micro-CT scanning demonstrated that significant damage to the vertebral body and endplate occurred as a consequence of staple insertion. The clinical implications of this study are significant. Based on the findings of this project it is likely that the clinical effect of the anterior vertebral staple evaluated in this project is a consequence of growth plate damage (also called hemiepiphysiodesis) causing a partial growth arrest of the vertebra rather than simply compression of the growth plate. The surgical creation of a unilateral growth arrest is a well established treatment used in the management of congenital scoliosis but has not previously been considered for use in idiopathic scoliosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine whether differences existed in lower-extremity joint biomechanics during self-selected walking cadence (SW) and fast walking cadence (FW) in overweight- and normal-weight children.---------- Design: Survey.---------- Setting: Institutional gait study center.---------- Participants: Participants (N=20; mean age ± SD, 10.4±1.6y) from referred and volunteer samples were classified based on body mass index percentiles and stratified by age and sex. Exclusion criteria were a history of diabetes, neuromuscular disorder, or recent lower-extremity injury.---------- Main Outcome Measures: Sagittal, frontal, and transverse plane angular displacements (degrees) and peak moments (newton meters) at the hip, knee, and ankle joints.---------- Results: The level of significance was set at P less than .008. Compared with normal-weight children, overweight children had greater absolute peak joint moments at the hip (flexor, extensor, abductor, external rotator), the knee (flexor, extensor, abductor, adductor, internal rotator), and the ankle (plantarflexor, inverter, external/internal rotators). After including body weight as a covariate, overweight children had greater peak ankle dorsiflexor moments than normal-weight children. No kinematic differences existed between groups. Greater peak hip extensor moments and less peak ankle inverter moments occurred during FW than SW. There was greater angular displacement during hip flexion as well as less angular displacement at the hip (extension, abduction), knee (flexion, extension), and ankle (plantarflexion, inversion) during FW than SW.---------- Conclusions: Overweight children experienced increased joint moments, which can have long-term orthopedic implications and suggest a need for more nonweight-bearing activities within exercise prescription. The percent of increase in joint moments from SW to FW was not different for overweight and normal-weight children. These findings can be used in developing an exercise prescription that must involve weight-bearing activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging is associated with loss of endurance; however, aging is also associated with decreased fatigue during maximal isometric contractions. The aims of this study were to examine the relationship between age and walking endurance (WE) and maximal isometric fatigue (MIF) and to determine which metabolic/fitness components explain the expected age effects on WE and MIF. Subjects were 96 pre-menopausal women. Oxygen uptake (walking economy) was assessed during a 3-mph walk; aerobic capacity and WE by progressive treadmill test; knee extension strength by isometric contractions, MIF during a 90-s isometric plantar flexion (muscle metabolism measured by 31P MRS). Age was related to increased walking economy (low VO2, r = −0.19, P < 0.03) and muscle metabolic economy (force/ATP, 0.34, P = 0.01), and reduced MIF (−0.26, P < 0.03). However, age was associated with reduced WE (−0.28, P < 0.01). Multiple regression showed that muscle metabolic economy explained the age-related decrease in MIF (partial r for MIF and age −0.13, P = 0.35) whereas walking economy did not explain the age-related decrease in WE (partial r for WE and age −0.25, P < 0.02). Inclusion of VO2max and knee endurance strength accounted for the age-related decreased WE (partial r for WE and age = 0.03, P > 0.80). In premenopausal women, age is related to WE and MIF. In addition, these results support the hypothesis that age-related increases in metabolic economy may decrease MIF. However, decreased muscle strength and oxidative capacity are related to WE.