908 resultados para effects on interests
Resumo:
Tibolone, a synthetic steroid, is effective in the treatment of postmenopausal symptoms. Its cardiovascular safety profile has been questioned, because tibolone reduces the levels of high-density lipoprotein (HDL) cholesterol. Soy-derived isoflavones may offer health benefits, particularly as regards lipids and also other cardiovascular disease (CVD) risk factors. The soy-isoflavone metabolite equol is thought to be the key as regards soy-related beneficial effects. We studied the effects of soy supplementation on various CVD risk factors in postmenopausal monkeys and postmenopausal women using tibolone. In addition, the impact of equol production capability was studied. A total of 18 monkeys received casein/lactalbumin (C/L) (placebo), tibolone, soy (a woman s equivalent dose of 138 mg of isoflavones), or soy with tibolone in a randomized order for 14 weeks periods, and there was a 4-week washout (C/L) in between treatments. Postmenopausal women using tibolone (N=110) were screened by means of a one-week soy challenge to find 20 women with equol production capability (4-fold elevation from baseline equol level) and 20 control women, and treated in a randomized cross-over trial with a soy powder (52 g of soy protein containing 112 mg of isoflavones) or placebo for 8 weeks. Before and after the treatments lipids and lipoproteins were assessed in both monkeys and women. In addition, blood pressure, arterial stiffness, endothelial function, sex steroids, sex hormone-binding globulin (SHBG), and vascular inflammation markers were assessed. A 14% increase in plasma low-density lipoprotein (LDL) + very low-density lipoprotein (VLDL) cholesterol was observed in tibolone-treated monkeys vs. placebo. Soy treatment resulted in a 18% decrease in LDL+VLDL cholesterol, and concomitant supplementation with tibolone did not negate the LDL+VLDL cholesterol-lowering effect of soy. A 30% increase in HDL cholesterol was observed in monkeys fed with soy, whereas HDL cholesterol levels were reduced (48%) after tibolone. Interestingly, Soy+Tibolone diet conserved HDL cholesterol levels. Tibolone alone increased the total cholesterol (TC):HDL cholesterol ratio, whereas it was reduced by Soy or Soy+Tibolone. In postmenopausal women using tibolone, reductions in the levels of total cholesterol and LDL cholesterol were seen after soy supplementation compared with placebo, but there was no effect on HDL cholesterol, blood pressure, arterial stiffness or endothelial function. Soy supplementation decreased the levels of estrone in equol producers, and those of testosterone in the entire study population. No changes were seen in the levels of androstenedione, dehydroepiandrosterone sulfate, or SHBG. The levels of vascular cell adhesion molecule-1 increased, and platelet-selectin decreased after soy treatment, whereas C-reactive protein and intercellular adhesion molecule-1 remained unchanged. At baseline and unrelated to soy treatment, equol producers had lower systolic, diastolic and mean arterial pressures, less arterial stiffness and better endothelial function than non-producers. To conclude, soy supplementation reversed the tibolone-induced fall in HDL cholesterol in postmenopausal monkeys, but this effect was not seen in women taking tibolone. Equol production capability was associated with beneficial cardiovascular changes and thus, this characteristic may offer cardiovascular benefits, at least in women using tibolone.
Resumo:
In this paper, the effects of energy quantization on different single-electron transistor (SET) circuits (logic inverter, current-biased circuits, and hybrid MOS-SET circuits) are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantizationmainly increases the Coulomb blockade area and Coulomb blockade oscillation periodicity, and thus, affects the SET circuit performance. A new model for the noise margin of the SET inverter is proposed, which includes the energy quantization effects. Using the noise margin as a metric, the robustness of the SET inverter is studied against the effects of energy quantization. An analytical expression is developed, which explicitly defines the maximum energy quantization (termed as ``quantization threshold'') that an SET inverter can withstand before its noise margin falls below a specified tolerance level. The effects of energy quantization are further studiedfor the current-biased negative differential resistance (NDR) circuitand hybrid SETMOS circuit. A new model for the conductance of NDR characteristics is also formulated that explains the energy quantization effects.
Resumo:
In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Large herbivores can influence plant and soil properties in grassland ecosystems, but especially for belowground biota and processes, the mechanisms that explain these effects are not fully understood. Here, we examine the capability of three grazing mechanisms-plant defoliation, dung and urine return, and physical presence of animals (causing trampling and excreta return in patches)-to explain grazing effects in Phleum pratense-Festuca pratensis dairy cow pasture in Finland. Comparison of control plots and plots grazed by cows showed that grazing maintained original plant-community structure, decreased shoot mass and root N and P concentrations, increased shoot N and P concentrations, and had an inconsistent effect on root mass. Among soil fauna, grazing increased the abundance of fungivorous nematodes and Aporrectodea earthworms and decreased the abundance of detritivorous enchytraeids and Lumbricus earthworms. Grazing also increased soil density and pH but did not affect average soil inorganic-N concentration. To reveal the mechanisms behind these effects, we analyzed results from mowed plots and plots that were both mowed and treated with a dung and urine mixture. This comparison revealed that grazing effects on plant attributes were almost entirely explained by defoliation, with only one partly explained by excreta return. Among belowground attributes, however, the mechanisms were more mixed, with effects explained by defoliation, patchy excreta return, and cow trampling. Average soil inorganic-N concentration was not affected by grazing because it was simultaneously decreased by defoliation and increased by cow presence. Presence of cows created great spatial heterogeneity in soil N availability and abundance of fungivorous nematodes. A greenhouse trial revealed a grazing-induced soil feedback on plant growth, which was explained by patchiness in N availability rather than changes in soil biota. Our results show that grazing effects on plant attributes can be satisfactorily predicted using the effects of defoliation, whereas those on soil fauna and soil N availability need understanding of other mechanisms as well. The results indicate that defoliation-induced changes in plant ecophysiology and the great spatial variation in N availability created by grazers are the two key mechanisms through which large herbivores can control grassland ecosystems.
Resumo:
The addition reactions of alcohols, ROH (R = CH3, C2H5 n-C3H7, i-C3H7 and t-C4H9), to p-bromophenylisothiocyanate show that the rates decrease in the order, CH3OH> C2H5OH> n-C3H7OH> i-C3H7OH> t-C4H9OH, although the basicities of the alcohols vary in the reverse order. The results indicate the greater importance of steric factors as compared with polar factors. Evidence is also presented for the formation of a complex between the isothiocyanate and the alcohol in the first stage of the addition reaction. In the addition of aniline to substituted phenylisothiocyanates the rate data give a satisfactory linear correlation with Hammett σ constants and the results clearly show that electron-withdrawing groups favour the addition reaction. The addition of aniline to alkyl isothiocyanates have been studied in order to find out the nature of alkyl group interaction in these derivatives. Kinetic studies on the addition of substituted anilines to phenylisothiocyanate show that the rate of reaction increases with the electron-donating ability of the substituents on the aniline as also the basicity of the aniline.
Resumo:
Ring-chain tautomeric equilibria of o-benzoylbenzamides in 95% ethanol, chloroform, dioxan, and acetonitrile have been estimated using u.v. spectroscopy. Unlike the case of acids, solvent polarity has only a small effect. In ethanol the cyclic form is favoured. Electron-withdrawing groups in the amide-bearing ring disfavour the cyclic form. Substitution of methyl, ethyl, and phenyl groups on the nitrogen atom of the amide function results in increase of the proportion of the cyclic form in the first two cases and decrease in the last.
Resumo:
Moisture absorption characteristics and its effects on the mechanical properties and failure process of polymers (neat epoxy and polyester resins) and composites with simple (glass, carbon and kevlar) and hybrid (glass-carbon, carbon-kevlar and kevlar-glass) fibres were experimentally determined before and after immersion in water at 343 K for 20 days. The maximum moisture content (Mm) and diffusion coefficient (Dx) of these composites were determined. The degradation in ultimate tensile strength and Young's modulus due to the moisture content were experimentally determined and found to be quite significant. Acoustic emissions, from specimens before and after exposure, were monitored during the load cycle, and revealed a significant change in the failure process of these composites. Scanning Electron Microscope (SEM) studies on failed exposed and unexposed specimens revealed resin leach out and fibre prominence.
Resumo:
Oral administration of pulegone (400 mg/kg) to rats once daily for five days caused significant decreases in the levels of liver microsomal cytochrome P-450 and heme. Cytochrome b5 and NAD(P)H-cytochrome c-reductase activities were not affected. Massive hepatotoxicy accompanied by an increase in serum glutamate pyruvate transaminase (SGPT) and a decrease in glucose-6-phosphatase were observed upon treatment with pulegone. A significant decrease in aminopyrine N-demethylase was also noticed after pulegone administration. Menthone or carvone (600 mg/kg), compounds related to pulegone, when administered orally did not cause any decrease in cytochrome P-450 levels. The hepatotoxic effects of pulegone were both dose and time dependent. Pretreatment of rats with phenobarbital (PB) or diethylmaleate (DEM) potentiated the hepatotoxicity caused by pulegone, whereas, pretreatment with 3-methylcholanthrene (3-MC) or piperonyl butoxide protected from it. It appears that a PB induced cytochrome P-450 catalysed reactive metabolite(s) may be responsible for the hepatotoxicity caused by pulegone.
Resumo:
1,2-Enedioic systems, being sterically perturbed from planarity do not show the effect of the extended conjugation expected of a (formal) trienic entity. In the absence of a model which approximates to a uniplanar situation, the strategy of replacing an ester group in the enedioates by a cyano (for which less stringent steric demand may be presumed) and noting the correction concomitant to this replacement was adopted to arrive at a notional figure for the position of maximal absorption in the planar enedioates. From this the conclusion, subject to substantiation by molecular mechanical or quantum chemical calculations, was drawn that even the E-isomeric and comparatively less substituted enedioates are highly sterically perturbed. An alternative to an earlier explanation of the bathochromic shift of absorption maxima encountered in the 5-cyclic ene-ester and ene-nitrile, relative to the 6-cyclic analogues (observed also with the enedioates and cyanovinyl ester systems), seen later to have been based on unwarranted premises, has been advanced. A comment on the absorption characteristics of enedioic anhydrides has been appended.
Resumo:
Alpha-Terpineol (I), a monocyclic monoterpene tertiary alcohol, is widely used in the manufacture of perfumes, cosmetics, soaps and antiseptic agents. It was reported earlier (Horning et al. 1976) that this monoterpene alcohol when administered to humans is hydroxylated to p-menth-l,2,8-triol (II). It is not known whether c~-terpineol also produces other metabolites during its metabolism in the mammalian system and if so, the nature of these metabolites.
Resumo:
The electrical resistance of the binary liquid system cyclohexane + acetic anhydride is measured, in the critical region, both in the pure mixture and when the mixture is doped with small amounts (≈ 100 ppm) of H2O/D2O impurities.T c was approached to aboutt=3×10−6 wheret=(T −T c )/T c . The critical exponentb ≈ 0.35 in the fit of the resistance data to the equationdR/dT ∼t −b does not seem to be affected appreciably by the impurities. There is a sign reversal ofdR/dt in the non-critical region. Binary liquid systems seem to violate the universality of the critical resistivity.
Resumo:
The random direction short Glass Fiber Reinforced Plastics (GFRP) have been prepared by two compression moulding processes, namely the Preform and Sheet Moulding Compound (SMC) processes. Cutting force analysis and surface characterization are conducted on the random direction short GFRPs with varying fiber contents (25 similar to 40%). Edge trimming experiments are preformed using carbide inserts with varing the depth of cut and cutting speed. Machining characteristics of the Preform and SMC processed random direction short GFRPs are evaluated in terms of cutting forces, surface quality, and tool wear. It is found that composite primary processing and fiber contents are major contributing factors influencing the cutting force magnitudes and surface textures. The SMC composites show better surface finish over the Preform composites due to less delamination and fiber pullouts. Moreover, matrix damage and fiber protrusions at the machined edge are reduced by increasing fiber content in the random direction short GFRP composites.