963 resultados para ecologically adaptive strategies
Resumo:
Chondrostoma nasus is a cyprinid fish with highly specialized, ecologically and geographically distinct, ontogenetic trophic niches. Nase population numbers across their Swiss range have shown massive declines and many localized extinctions. Here we integrate data from different genetic markers with phenotypic and demographic data to survey patterns of neutral and adaptive genetic diversity in all extant (and one extinct) Swiss nase populations, with the aim to delineate intraspecific conservation units (CUs) and to inform future population management strategies. We discovered two major genetically and geographically distinct population groupings. The first population grouping comprises nase inhabiting rivers flowing into Lake Constance; the second comprises nase populations from Rhine drainages below Lake Constance. Within these clusters there is generally limited genetic differentiation among populations. Genomic outlier scans based on 256–377 polymorphic AFLP loci revealed little evidence of local adaptation both within and among population clusters, with the exception of one candidate locus identified in scans involving the inbred Schanzengraben population. However, significant phenotypic differentiation in body shape between certain populations suggests a need for more intensive future studies of local adaptation. Our data strongly suggests that the two major population groups should be treated as distinct CUs, with any supplemental stocking and reintroductions sourced only from within the range of the CU concerned.
Resumo:
In this thesis, we develop an adaptive framework for Monte Carlo rendering, and more specifically for Monte Carlo Path Tracing (MCPT) and its derivatives. MCPT is attractive because it can handle a wide variety of light transport effects, such as depth of field, motion blur, indirect illumination, participating media, and others, in an elegant and unified framework. However, MCPT is a sampling-based approach, and is only guaranteed to converge in the limit, as the sampling rate grows to infinity. At finite sampling rates, MCPT renderings are often plagued by noise artifacts that can be visually distracting. The adaptive framework developed in this thesis leverages two core strategies to address noise artifacts in renderings: adaptive sampling and adaptive reconstruction. Adaptive sampling consists in increasing the sampling rate on a per pixel basis, to ensure that each pixel value is below a predefined error threshold. Adaptive reconstruction leverages the available samples on a per pixel basis, in an attempt to have an optimal trade-off between minimizing the residual noise artifacts and preserving the edges in the image. In our framework, we greedily minimize the relative Mean Squared Error (rMSE) of the rendering by iterating over sampling and reconstruction steps. Given an initial set of samples, the reconstruction step aims at producing the rendering with the lowest rMSE on a per pixel basis, and the next sampling step then further reduces the rMSE by distributing additional samples according to the magnitude of the residual rMSE of the reconstruction. This iterative approach tightly couples the adaptive sampling and adaptive reconstruction strategies, by ensuring that we only sample densely regions of the image where adaptive reconstruction cannot properly resolve the noise. In a first implementation of our framework, we demonstrate the usefulness of our greedy error minimization using a simple reconstruction scheme leveraging a filterbank of isotropic Gaussian filters. In a second implementation, we integrate a powerful edge aware filter that can adapt to the anisotropy of the image. Finally, in a third implementation, we leverage auxiliary feature buffers that encode scene information (such as surface normals, position, or texture), to improve the robustness of the reconstruction in the presence of strong noise.
Resumo:
The aim of this paper is to present a new class of smoothness testing strategies in the context of hp-adaptive refinements based on continuous Sobolev embeddings. In addition to deriving a modified form of the 1d smoothness indicators introduced in [26], they will be extended and applied to a higher dimensional framework. A few numerical experiments in the context of the hp-adaptive FEM for a linear elliptic PDE will be performed.
Resumo:
Using drought as a lens, this article analyses how agro-pastoralists in Makueni district, Kenya adapt their livestock production to climate variability and change. Data were collected from a longitudinal survey of 127 agro-pastoral households. Approximately one-third of the households have inadequate feeds, and livestock diseases are major challenges during non-drought and drought periods. Agro-pastoralists’ responses to drought are reactive and mainly involve intensifying exploitation of resources and the commons. Proactive responses such as improving production resources are few. Poverty, limited responses to market dynamics and inadequate skills constrain adaptations. Many agro-pastoralists’ attachment to livestock deters livestock divestment, favouring disadvantageous sales that result in declining incomes. To improve adaptive capacity, interventions should expose agro-pastoralists to other forms of savings, incorporate agro-pastoralists as agents of change by building their capacity to provide extension services, and maintain infrastructure. Securing livestock mobility, pasture production and access is crucial under the variable social-ecological conditions.
Resumo:
In the face of likely climate change impacts policy makers at different spatial scales need access to assessment tools that enable informed policy instruments to be designed. Recent scientific advances have facilitated the development of improved climate projections, but it remains to be seen whether these are translated into effective adaptation strategies. This paper uses existing databases on climate impacts on European agriculture and combines them with an assessment of adaptive capacity to develop an interdisciplinary approach for prioritising policies. It proposes a method for identifying relevant policies for different EU countries that are representative of various agroclimatic zones. Our analysis presents a framework for integrating current knowledge of future climate impacts with an understanding of the underlying socio-economic, agricultural and environmental traits that determine a region’s capacity for adapting to climate change.
Resumo:
We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation.
Resumo:
Accessibility is an essential concept widely used to evaluate the impact of land-use and transport strategies in transport and urban planning. Accessibility is typically evaluated by using a transport model or a land-use model independently or successively without a feedback loop, thus neglecting the interaction effects between the two systems and the induced competition effects among opportunities due to accessibility improvements. More than a mere methodological curiosity, failure to account for land- use/transport interactions and the competition effect may result in large underestimation of the policy effects. With the recent development of land-use and transport interaction (LUTI) models, there is a growing interest in using these models to adequately measure accessibility and evaluate its impact. The current study joins this research stream by embedding an accessibility measure in a LUTI model with two main aims. The first aim is to account for adaptive accessibility, namely the adjustment of the potential accessibility due to the effect of competition among opportunities (e.g., workplaces) as a result of improved accessibility. LUTI models are particularly suitable for assessing adaptive accessibility because the competition factor is a function of the number of jobs, which is related to land-use attractiveness and the number of workers which is related, among other factors, to the transport demand. The second aim is to identify the optimal implementation scenario of policy measures on the basis of the potential and adaptive accessibility and analyse the results in terms of social welfare and accessibility. The metropolitan area of Madrid is used as a case-study and two transport policy instruments, namely a cordon toll and bus frequency increase, have been chosen for the simulation study in order to present the usefulness of the approach to urban planners and policy makers. The MARS model (Metropolitan Activity Relocation Simulator) calibrated for Madrid was employed as the analysis tool. The impact of accessibility is embedded in the model through a social welfare function that includes not only costs and benefits to both road users and transport operators, but also costs and benefits for the government and society in general (external costs). An optimisation procedure is performed by the MARS model for maximizing the value of objective function in order to find the best (optimal) policy imp lementations intensity (i.e., price, frequency). Last, the two policy strategies are evaluated in terms of their accessibility. Results show that the accessibility with competition factor influences the optimal policy implementation level and also generates different results in terms of social welfare. In addition, mapping the difference between the potential and the adaptive accessibility indicators shows that the main changes occur in areas where there is a strong competition among land-use opportunities.
Resumo:
Nowadays, HTTP adaptive streaming (HAS) has become a reliable distribution technology offering significant advantages in terms of both user perceived Quality of Experience (QoE) and resource utilization for content and network service providers. By trading-off the video quality, HAS is able to adapt to the available bandwidth and display requirements so that it can deliver the video content to a variety of devices over the Internet. However, until now there is not enough knowledge of how the adaptation techniques affect the end user's visual experience. Therefore, this paper presents a comparative analysis of different bitrate adaptation strategies in adaptive streaming of monoscopic and stereoscopic video. This has been done through a subjective experiment of testing the end-user response to the video quality variations, considering the visual comfort issue. The experimental outcomes have made a good insight into the factors that can influence on the QoE of different adaptation strategies.
Resumo:
The growing popularity of adaptive streaming-based video delivery nowadays has raised the interest about the user's perception when experiencing quality adaptation. The impact of the video content characteristics on user's perceptual quality has already become evident. The aim of this study is to investigate the influence of this factor on the quality of experience of adaptive streaming scenarios. Our results show that the perceptual quality of adaptation strategies applied on videos with high spatial and low temporal amount of activity is significantly lower compared to the other content types.
Resumo:
Nowadays robots have made their way into real applications that were prohibitive and unthinkable thirty years ago. This is mainly due to the increase in power computations and the evolution in the theoretical field of robotics and control. Even though there is plenty of information in the current literature on this topics, it is not easy to find clear concepts of how to proceed in order to design and implement a controller for a robot. In general, the design of a controller requires of a complete understanding and knowledge of the system to be controlled. Therefore, for advanced control techniques the systems must be first identified. Once again this particular objective is cumbersome and is never straight forward requiring of great expertise and some criteria must be adopted. On the other hand, the particular problem of designing a controller is even more complex when dealing with Parallel Manipulators (PM), since their closed-loop structures give rise to a highly nonlinear system. Under this basis the current work is developed, which intends to resume and gather all the concepts and experiences involve for the control of an Hydraulic Parallel Manipulator. The main objective of this thesis is to provide a guide remarking all the steps involve in the designing of advanced control technique for PMs. The analysis of the PM under study is minced up to the core of the mechanism: the hydraulic actuators. The actuators are modeled and experimental identified. Additionally, some consideration regarding traditional PID controllers are presented and an adaptive controller is finally implemented. From a macro perspective the kinematic and dynamic model of the PM are presented. Based on the model of the system and extending the adaptive controller of the actuator, a control strategy for the PM is developed and its performance is analyzed with simulation.
Resumo:
The usage of HTTP adaptive streaming (HAS) has become widely spread in multimedia services. Because it allows the service providers to improve the network resource utilization and user׳s Quality of Experience (QoE). Using this technology, the video playback interruption is reduced since the network and server status in addition to capability of user device, all are taken into account by HAS client to adapt the quality to the current condition. Adaptation can be done using different strategies. In order to provide optimal QoE, the perceptual impact of adaptation strategies from point of view of the user should be studied. However, the time-varying video quality due to the adaptation which usually takes place in a long interval introduces a new type of impairment making the subjective evaluation of adaptive streaming system challenging. The contribution of this paper is two-fold: first, it investigates the testing methodology to evaluate HAS QoE by comparing the subjective experimental outcomes obtained from ACR standardized method and a semi-continuous method developed to evaluate the long sequences. In addition, influence of using audiovisual stimuli to evaluate the video-related impairment is inquired. Second, impact of some of the adaptation technical factors including the quality switching amplitude and chunk size in combination with high range of commercial content type is investigated. The results of this study provide a good insight toward achieving appropriate testing method to evaluate HAS QoE, in addition to designing switching strategies with optimal visual quality.
Resumo:
Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in insect and vertebrate cells. Through recombinant DNA technology, the alphavirus RNA replication machinery has been engineered for high-level expression of heterologous RNAs and proteins. Amplification of replication-competent alpha-virus RNAs (replicons) can be initiated by RNA or DNA transfection and a variety of packaging systems have been developed for producing high titers of infectious viral particles. Although normally cytocidal for vertebrate cells, variants with adaptive mutations allowing noncytopathic replication have been isolated from persistently infected cultures or selected using a dominant selectable marker. Such mutations have been mapped and used to create new alphavirus vectors for noncytopathic gene expression in mammalian cells. These vectors allow long-term expression at moderate levels and complement previous vectors designed for short-term high-level expression. Besides their use for a growing number of basic research applications, recombinant alphavirus RNA replicons may also facilitate genetic vaccination and transient gene therapy.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.