887 resultados para duchenne muscular dystrophy
Resumo:
La distrofia muscolare di Emery-Dreifuss (EDMD) è una miopatia degenerativa ereditaria caratterizzata da debolezza e atrofia dei muscoli senza coinvolgimento del sistema nervoso. Individui EDMD presentano, inoltre, cardiomiopatia con difetto di conduzione che provoca rischio di morte improvvisa. Diversi studi evidenziano un coinvolgimento di citochine in diverse distrofie muscolari causanti infiammazione cronica, riassorbimento osseo, necrosi cellulare. Abbiamo effettuato una valutazione simultanea della concentrazione di citochine, chemochine, fattori di crescita, presenti nel siero di un gruppo di 25 pazienti EDMD. L’analisi effettuata ha evidenziato un aumento di citochine quali IL-17, TGFβ2, INF-γ e del TGFβ1. Inoltre, una riduzione del fattore di crescita VEGF e della chemochina RANTES è stata rilevata nel siero dei pazienti EDMD rispetto ai pazienti controllo. Ulteriori analisi effettuate tramite saggio ELISA hanno evidenziato un aumento dei livelli di TGFβ2 e IL-6 nel terreno di coltura di fibroblasti EDMD2. Per testare l’effetto nei muscoli, di citochine alterate, abbiamo utilizzato terreno condizionante di fibroblasti EDMD per differenziare mioblasti murini C2C12. Una riduzione del grado di differenziamento è stata osservata nei mioblasti condizionati con terreno EDMD. Trattando queste cellule con anticorpi neutralizzanti contro TGFβ2 e IL-6 si è avuto un miglioramento del grado di differenziamento. In C2C12 che esprimevano la mutazione H222P del gene Lmna,non sono state osservate alterazioni di citochine e benefici di anticorpi neutralizzanti. I dati mostrano un effetto patogenetico delle citochine alterate come osservato in fibroblasti e siero di pazienti, suggerendo un effetto sul tessuto fibrotico di muscoli EDMD. Un effetto intrinseco alla mutazione della lamina A è stato rilevato sul espressione di caveolina 3 in mioblasti differenziati EDMD. I risultati si aggiungono a dati forniti sulla patogenesi dell' EDMD confermando che fattori intrinseci ed estrinseci contribuiscono alla malattia. Utilizzo di anticorpi neutralizzanti specifici contro fattori estrinseci potrebbe rappresentare un approccio terapeutico come mostrato in questo studio.
Resumo:
Dysferlin is a muscle protein involved in cell membrane repair and its deficiency is associated with muscular dystrophy. We describe that dysferlin is also expressed in leaky endothelial cells. In the normal central nervous system (CNS), dysferlin is only present in endothelial cells of circumventricular organs. In the inflamed CNS of patients with multiple sclerosis (MS) or in animals with experimental autoimmune encephalomyelitis, dysferlin reactivity is induced in endothelial cells and the expression is associated with vascular leakage of serum proteins. In MS, dysferlin expression in endothelial cells is not restricted to vessels with inflammatory cuffs but is also present in noninflamed vessels. In addition, many blood vessels with perivascular inflammatory infiltrates lack dysferlin expression in inactive lesions or in the normal-appearing white matter. In vitro, dysferlin can be induced in endothelial cells by stimulation with tumor necrosis factor-alpha. Hence, dysferlin is not only a marker for leaky brain vessels, but also reveals dissociation of perivascular inflammatory infiltrates and blood-brain barrier disturbance in multiple sclerosis.
Resumo:
OBJECTIVE The aim of the therapy is mechanical and functional stabilization of high dislocated hips with dysplasia coxarthrosis using total hip arthroplasty (THA). INDICATIONS Developmental dysplasia of the hip (DDH) in adults, symptomatic dysplasia coxarthrosis, high hip dislocation according to Crowe type III/IV, and symptomatic leg length inequality. CONTRAINDICATIONS Cerebrospinal dysfunction, muscular dystrophy, apparent disturbance of bone metabolism, acute or chronic infections, and immunocompromised patients. SURGICAL TECHNIQUE With the patient in a lateral decubitus position an incision is made between the anterior border of the gluteus maximus muscle and the posterior border of the gluteus medius muscle (Gibson interval). Identification of the sciatic nerve to protect the nerve from traction disorders by visual control. After performing trochanter flip osteotomy, preparation of the true actetabulum if possible. Implantation of the reinforcement ring, preparation of the femur and if necessary for mobilization, resection until the trochanter minor. Test repositioning under control of the sciatic nerve. Finally, refixation of the trochanteric crest. POSTOPERATIVE MANAGEMENT During hospital stay, intensive mobilization of the hip joint using a continuous passive motion machine with maximum flexion of 70°. No active abduction and passive adduction over the body midline. Maximum weight bearing 10-15 kg for 8 weeks, subsequently, first clinical and radiographic follow-up and deep venous thrombosis prophylaxis until full weight bearing. RESULTS From 1995 to 2012, 28 THAs of a Crow type IV high hip-dislocation were performed in our institute. Until now 14 patients have been analyzed during a follow-up of 8 years in 2012. Mid-term results showed an improvement of the postoperative clinical score (Merle d'Aubigné score) in 86 % of patients. Good to excellent results were obtained in 79 % of cases. Long-term results are not yet available. In one case an iatrogenic neuropraxia of the sciatic nerve was observed and after trauma a redislocation of the arthroplasty appeared in another case. In 2 cases an infection of the THA appeared 8 and 15 months after index surgery. No pseudoarthrosis of the trochanter or aseptic loosening was noticed.
Resumo:
The four basic helix-loop-helix myogenic transcription factors, myogenin, Myf5, MRF4, and MyoD are critical for embryonic skeletal muscle development. Myogenin is necessary for the terminal differentiation of myoblasts into myofibers during embryogenesis, but little is known about the roles played by myogenin in adult skeletal muscle function and metabolism. Furthermore, while metabolism is a well-studied physiological process, how it is regulated at the transcriptional level remains poorly understood. In this study, my aim was to determine the function of myogenin in adult skeletal muscle metabolism, exercise capacity, and regeneration. To investigate this, I utilized a mouse strain harboring the Myogflox allele and a Cre recombinase transgene, enabling the efficient deletion of myogenin in the adult mouse. Myogflox/flox mice were stressed physically through involuntary treadmill running and by breeding them with a strain harboring the Duchenne’s muscular dystrophy (DMDmdx) allele. Surprisingly, Myog-deleted animals exhibited an enhanced capacity for exercise, running farther and faster than their wild-type counterparts. Increased lactate production and utilization of glucose as a fuel source indicated that Myog-deleted animals exhibited an increased glycolytic flux. Hypoglycemic Myog-deleted mice no longer possessed the ability to outrun their wild-type counterparts, implying the ability of these animals to further deplete their glucose reserves confers their enhanced exercise capacity. Moreover, Myog-deleted mice exhibited an enhanced response to long-term exercise training. The mice developed a greater proportion of type 1 oxidative muscle fibers, and displayed increased levels of succinate dehydrogenase activity, indicative of increased oxidative metabolism. Mdx:Myog-deleted mice exhibited a similar phenotype, outperforming their mdx counterparts, although lagging behind wild-type animals. The morphology of muscle tissue from mdx:Myog-deleted mice appears to mimic that of mdx animals, indicating that myogenin is dispensable for adult skeletal muscle regeneration. Through global gene expression profiling and quantitative (q)RT-PCR, I identified a unique set of putative myogenin-dependent genes involved in regulating metabolic processes. These data suggest myogenin’s functions during adulthood are distinctly different than those during embryogenesis, and myogenin acts as a high-level transcription factor regulating metabolic activity in adult skeletal muscle.
Resumo:
A 57-year-old man with genetically proven facioscapulohumeral muscular dystrophy (FSHMD 1A) demonstrated Beevor sign (video on the Neurology Web site at www.neurology.org). The upward movement of the umbilicus in a supine patient flexing the neck or sitting up is named after the British neurologist Charles Edward Beevor (1854-1908). He described a "marked elevation of the umbilicus in the act of sitting up" due to a paralyzed infraumbilical part of the rectus abdominis muscle, indicating a lesion of the spinal cord between the segments T10 and T12 or its nerve roots.(1) Beevor sign may also be present, as in our patient, in myopathies affecting the abdominal muscles, particularly in FSHMD, in which predominant involvement of the lower part of the rectus abdominis muscle is typical.(2).
Resumo:
In aerobic eukaryotic cells, the high energy metabolite ATP is generated mainly within the mitochondria following the process of oxidative phosphorylation. The mitochondrial ATP is exported to the cytoplasm using a specialized transport protein, the ADP/ATP carrier, to provide energy to the cell. Any deficiency or dysfunction of this membrane protein leads to serious consequences on cell metabolism and can cause various diseases such as muscular dystrophy. Described as a decisive player in the programmed cell death, it was recently shown to play a role in cancer. The objective of this review is to summarize the current knowledge of the involvement of the ADP/ATP carrier, encoded by the SLC25A4, SLC25A5, SLC25A6 and SLC25A31 genes, in human diseases and of the efforts made at designing different model systems to study this carrier and the associated pathologies through biochemical, genetic, and structural approaches.
Resumo:
The importance of alternative splicing for the diversity of the proteome and the large number of genetic diseases that are due to splicing defects call for methods to modulate alternative splicing decisions. Although splicing can be modulated by antisense oligonucleotides, this approach is confronted with problems of efficient delivery and the need for repeated administrations of large amounts of the oligonucleotides. Therefore we have developed methods allowing us to modulate splicing with the help of modified derivatives of the U7 small nuclear RNA involved in histone RNA 3' end processing. Its nuclear accumulation as a stable ribonucleoprotein particle makes U7 snRNA especially useful for this purpose. In particular, U7 derivatives containing two tandem antisense sequences directed against targets upstream and downstream of an exon can induce the efficient and specific skipping of that exon. U7 expression cassettes have been successfully introduced into a great number of cell lines, primary cells or tissues with the help of lentiviral and adeno-associated viral vectors. Examples of these therapeutic strategies in the fields of β-thalassemia, Duchenne muscular dytrophy and HIV/AIDS are discussed.
Resumo:
Antisense oligonucleotides (ASOs) have the potential of revolutionizing medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated with nanoparticles to enhance their stability and cellular uptake; however, one of the biggest challenges is the poor understanding of their uptake mechanism, which is needed for designing better ASOs with high activity and low toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (P-PMO), 2?Omethyl phosphorothioate (2?OMe) and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Deuchenne muscular dystrophy (DMD). We show that P-PMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. P-PMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations P-PMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in-vitro. In-vivo, the activity of P-PMO was significantly decreased in SCARA1 knock-out mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2?OMe as shown by competitive inhibition and co-localization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that P-PMO and tcDNA have higher binding profiles to the receptor compared to 2?OMe. These results demonstrate receptor-mediated uptake for a range of ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.
Resumo:
Utrophin/dystrophin-related protein is the autosomal homologue of the chromosome X-encoded dystrophin protein. In adult skeletal muscle, utrophin is highly enriched at the neuromuscular junction. However, the molecular mechanisms underlying regulation of utrophin gene expression are yet to be defined. Here we demonstrate that the growth factor heregulin increases de novo utrophin transcription in muscle cell cultures. Using mutant reporter constructs of the utrophin promoter, we define the N-box region of the promoter as critical for heregulin-mediated activation. Using this region of the utrophin promoter for DNA affinity purification, immunoblots, in vitro kinase assays, electrophoretic mobility shift assays, and in vitro expression in cultured muscle cells, we demonstrate that ets-related GA-binding protein α/β transcription factors are activators of the utrophin promoter. Taken together, these results suggest that the GA-binding protein α/β complex of transcription factors binds and activates the utrophin promoter in response to heregulin-activated extracellular signal–regulated kinase in muscle cell cultures. These findings suggest methods for achieving utrophin up-regulation in Duchenne’s muscular dystrophy as well as mechanisms by which neurite-derived growth factors such as heregulin may influence the regulation of utrophin gene expression and subsequent enrichment at the neuromuscular junction of skeletal muscle.
Resumo:
Chimeric RNA/DNA oligonucleotides (“chimeraplasts”) have been shown to induce single base alterations in genomic DNA both in vitro and in vivo. The mdx mouse strain has a point mutation in the dystrophin gene, the consequence of which is a muscular dystrophy resulting from deficiency of the dystrophin protein in skeletal muscle. To test the feasibility of chimeraplast-mediated gene therapy for muscular dystrophies, we used a chimeraplast (designated “MDX1”) designed to correct the point mutation in the dystrophin gene in mdx mice. After direct injection of MDX1 into muscles of mdx mice, immunohistochemical analysis revealed dystrophin-positive fibers clustered around the injection site. Two weeks after single injections into tibialis anterior muscles, the maximum number of dystrophin-positive fibers (approximately 30) in any muscle represented 1–2% of the total number of fibers in that muscle. Ten weeks after single injections, the range of the number of dystrophin-positive fibers was similar to that seen after 2 wk, suggesting that the expression was stable, as would be predicted for a gene-conversion event. Staining with exon-specific antibodies showed that none of these were “revertant fibers.” Furthermore, dystrophin from MDX1-injected muscles was full length by immunoblot analysis. No dystrophin was detectable by immunohistochemical or immunoblot analysis after control chimeraplast injections. Finally, reverse transcription–PCR analysis demonstrated the presence of transcripts with the wild-type dystrophin sequence only in mdx muscles injected with MDX1 chimeraplasts. These results provide the foundation for further studies of chimeraplast-mediated gene therapy as a therapeutic approach to muscular dystrophies and other genetic disorders of muscle.
Resumo:
To better understand the structure and function of Z lines, we used sarcomeric isoforms of α-actinin and γ-filamin to screen a human skeletal muscle cDNA library for interacting proteins by using the yeast two-hybrid system. Here we describe myozenin (MYOZ), an α-actinin- and γ-filamin-binding Z line protein expressed predominantly in skeletal muscle. Myozenin is predicted to be a 32-kDa, globular protein with a central glycine-rich domain flanked by α-helical regions with no strong homologies to any known genes. The MYOZ gene has six exons and maps to human chromosome 10q22.1-q22.2. Northern blot analysis demonstrated that this transcript is expressed primarily in skeletal muscle with significantly lower levels of expression in several other tissues. Antimyozenin antisera stain skeletal muscle in a sarcomeric pattern indistinguishable from that seen by using antibodies for α-actinin, and immunogold electron microscopy confirms localization specifically to Z lines. Thus, myozenin is a skeletal muscle Z line protein that may be a good candidate gene for limb-girdle muscular dystrophy or other neuromuscular disorders.
Resumo:
Fast skeletal muscles of mdx (X chromosome-linked muscular dystrophy) mice were injected after birth with a recombinant adenovirus containing a minidys- trophin gene, a 6.3-kbp cDNA coding for the N- and C-terminal ends of dystrophin. Adult muscles were challenged by forced lengthening during tetanic contractions. Stretch-induced mechanical and histological damages were much reduced in injected muscles, in direct proportion of the Miniber of fibers expressing minidystrophin. Damaged fibers were preferentially found among minidystrophin-negative regions. Minidystrostrophin confers an important functional and structural protection of limb muscles against high mechanical stress, even after a partial somatic gene transfer.
Resumo:
Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Caveolae are striking morphological features of the plasma membrane of mammalian cells. Caveolins, the major proteins of caveolae, play a crucial role in the formation of these invaginations of the plasma membrane; however, the precise mechanisms involved are only just starting to be unravelled. Recent studies suggest that caveolae are stable structures first generated in the Golgi complex. Their formation and exit from the Golgi complex is associated with caveolin oligomerisation, acquisition of detergent insolubility, and association with cholesterol. Modelling of caveolin-membrane interactions together with in vitro studies of caveolin peptides are providing new insights into how caveolin-lipid interactions could generate the unique architecture of the caveolar domain.