913 resultados para dreaming circle
Resumo:
The present study explored the relationship between lucidity in dreams (awareness of dreams while dreaming) and mindfulness during wakefulness, also considering meditation as a possible moderating variable. An online survey was completed by 528 respondents, of whom 386 (73.1%) had lucid dream experiences. The reported frequency of lucid dreams was found to be positively related to higher dispositional mindfulness in wakefulness. This relationship was only present in those participants who reported acquaintance with meditation. Regarding the dimensions of mindfulness, lucid dream frequency was more strongly associated with mindful presence rather than acceptance. The findings support the notion of an existing relationship between lucidity in dreams and mindfulness during wakefulness, yet it remains unclear whether the relationship is influenced by actual meditation practice or whether it reflects some natural predispositions. Future studies should examine the role of different meditation practices, investigate personality variables that might influence the relationship, and explore how different facets of mindfulness and lucidity interrelate.
Resumo:
Rolling Circle Amplification (RCA) is an isothermal enzymatic method generating single-stranded DNA products consisting of concatemers containing multiple copies of the reverse complement of the circular template precursor. Little is known on the compatibility of modified nucleoside triphosphates (dN*TPs) with RCA, which would enable the synthesis of long, fully modified ssDNA sequences. Here, dNTPs modified at any position of the scaffold were shown to be compatible with rolling circle amplification, yielding long (>1 kb), and fully modified single-stranded DNA products. This methodology was applied for the generation of long, cytosine-rich synthetic mimics of telomeric DNA. The resulting modified oligo-nucleotides displayed an improved resistance to fetal bovine serum.
Resumo:
We engineer a brane picture for the reduction of Seiberg dualities from 4D to 3D, valid also in the presence of orientifold planes. We obtain effective 3D dualities on the circle by T-duality, geometrizing the non-perturbative superpotential which is an affine Toda potential. When reducing to pure 3D, we define a double-scaling limit which creates a sector of interacting singlets, giving a unified mechanism for the brane reduction of dualities.
Resumo:
Mit Hilfe des zeitgenössischen Romans 'The Circle' von Dave Eggers werden Entgrenzungs- und Verdichtungstendenzen moderner subjektivierter Arbeit illustriert, die einen Zusammenhang mit Burnout- und Erschöpfungsdepressionsdiagnosen plausibilisieren. Angesichts der Uneindeutigkeit der empirischen Evidenz wird vorgeschlagen, die Problematik der modernen Gestalt der Erwerbsarbeit – vor allem für diejenigen am unteren Ende der jeweiligen Hierarchien – nicht nur anhand ihrer Krankheitsträchtigkeit, sondern mit Hilfe des Konzepts der Lebensformen und ihrer normativen Aufladung zu kritisieren: Massiv entgrenzte und verdichtete Arbeit erscheint dann als Bruch des 'Arbeitsversprechens', das sich mit Entstehung der Arbeitsgesellschaft im 19. Jh. herausgebildet hat.
Resumo:
According to the World Health Organization, 15 million people suffer stroke worldwide each year, of these, 5 million die and 5 million are permanently disabled. Stroke is therefore a major cause of mortality world-wide. The majority of strokes are caused by a blood clot that occludes an artery in the brain, and although thrombolytic agents such as Alteplase are used to dissolve clots that arise in the arteries of the brain, there are limitations on the use of these thrombolytic agents. However over the past decade, other methods of treatment have been developed which include Thrombectomy Devices e.g. the 'GP' Thrombus Aspiration Device ('GP' TAD). Such devices may be used as an alternative to thrombolytics or in conjunction with them to extract blood clots in arteries such as the middle cerebral artery of the midbrain brain, and the posterior inferior cerebellar artery (PICA) of the posterior aspect of the brain. In this paper, we mathematically model the removal of blood clots using the 'GP' TAD from selected arteries of the brain where blood clots may arise taking into account factors such as the resistances, compliances and inertances effects. Such mathematical modelling may have potential uses in predicting the pressures necessary to extract blood clots of given lengths, and masses from arteries in the Circle of Willis - posterior circulation of the brain
Resumo:
We describe an adaptation of the rolling circle amplification (RCA) reporter system for the detection of protein Ags, termed “immunoRCA.” In immunoRCA, an oligonucleotide primer is covalently attached to an Ab; thus, in the presence of circular DNA, DNA polymerase, and nucleotides, amplification results in a long DNA molecule containing hundreds of copies of the circular DNA sequence that remain attached to the Ab and that can be detected in a variety of ways. Using immunoRCA, analytes were detected at sensitivities exceeding those of conventional enzyme immunoassays in ELISA and microparticle formats. The signal amplification afforded by immunoRCA also enabled immunoassays to be carried out in microspot and microarray formats with exquisite sensitivity. When Ags are present at concentrations down to fM levels, specifically bound Abs can be scored by counting discrete fluorescent signals arising from individual Ag–Ab complexes. Multiplex immunoRCA also was demonstrated by accurately quantifying Ags mixed in different ratios in a two-color, single-molecule-counting assay on a glass slide. ImmunoRCA thus combines high sensitivity and a very wide dynamic range with an unprecedented capability for single molecule detection. This Ag-detection method is of general applicability and is extendable to multiplexed immunoassays that employ a battery of different Abs, each labeled with a unique oligonucleotide primer, that can be discriminated by a color-coded visualization system. ImmunoRCA-profiling based on the simultaneous quantitation of multiple Ags should expand the power of immunoassays by exploiting the increased information content of ratio-based expression analysis.
Resumo:
Many bacterial plasmids replicate by a rolling-circle mechanism that involves the generation of single-stranded DNA (ssDNA) intermediates. Replication of the lagging strand of such plasmids initiates from their single strand origin (sso). Many different types of ssos have been identified. One group of ssos, termed ssoA, which have conserved sequence and structural features, function efficiently only in their natural hosts in vivo. To study the host specificity of sso sequences, we have analyzed the functions of two closely related ssoAs belonging to the staphylococcal plasmid pE194 and the streptococcal plasmid pLS1 in Staphylococcus aureus. The pLS1 ssoA functioned poorly in vivo in S. aureus as evidenced by accumulation of high levels of ssDNA but supported efficient replication in vitro in staphylococcal extracts. These results suggest that one or more host factors that are present in sufficient quantities in S. aureus cell-free extracts may be limiting in vivo. Mapping of the initiation points of lagging strand synthesis in vivo and in vitro showed that DNA synthesis initiates from specific sites within the pLS1 ssoA. These results demonstrate that specific initiation of replication can occur from the pLS1 ssoA in S. aureus although it plays a minimal role in lagging strand synthesis in vivo. Therefore, the poor functionality of the pLS1 in vivo in a nonnative host is caused by the low efficiency rather than a lack of specificity of the initiation process. We also have identified ssDNA promoters and mapped the primer RNAs synthesized by the S. aureus and Bacillus subtilis RNA polymerases from the pE194 and pLS1 ssoAs. The S. aureus RNA polymerase bound more efficiently to the native pE194 ssoA as compared with the pLS1 ssoA, suggesting that the strength of RNA polymerase–ssoA interaction may play a major role in the functionality of the ssoA sequences in Gram-positive bacteria.
Resumo:
To understand how the human visual system analyzes images, it is essential to know the structure of the visual environment. In particular, natural images display consistent statistical properties that distinguish them from random luminance distributions. We have studied the geometric regularities of oriented elements (edges or line segments) present in an ensemble of visual scenes, asking how much information the presence of a segment in a particular location of the visual scene carries about the presence of a second segment at different relative positions and orientations. We observed strong long-range correlations in the distribution of oriented segments that extend over the whole visual field. We further show that a very simple geometric rule, cocircularity, predicts the arrangement of segments in natural scenes, and that different geometrical arrangements show relevant differences in their scaling properties. Our results show similarities to geometric features of previous physiological and psychophysical studies. We discuss the implications of these findings for theories of early vision.
Resumo:
Rolling circle amplification (RCA) is a surface-anchored DNA replication reaction that can be exploited to visualize single molecular recognition events. Here we report the use of RCA to visualize target DNA sequences as small as 50 nts in peripheral blood lymphocytes or in stretched DNA fibers. Three unique target sequences within the cystic fibrosis transmembrane conductance regulator gene could be detected simultaneously in interphase nuclei, and could be ordered in a linear map in stretched DNA. Allele-discriminating oligonucleotide probes in conjunction with RCA also were used to discriminate wild-type and mutant alleles in the cystic fibrosis transmembrane conductance regulator, p53, BRCA-1, and Gorlin syndrome genes in the nuclei of cultured cells or in DNA fibers. These observations demonstrate that signal amplification by RCA can be coupled to nucleic acid hybridization and multicolor fluorescence imaging to detect single nucleotide changes in DNA within a cytological context or in single DNA molecules. This provides a means for direct physical haplotyping and the analysis of somatic mutations on a cell-by-cell basis.
Resumo:
All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called “cut-and-paste” mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5′-to-3′ DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5′-TC and CTRR-3′ termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10–12 nucleotides from the 3′-end and transpose precisely between the 5′-A and T-3′, with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute ≈2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.
Resumo:
This article deals with the ongoing debate on the complex role of English as an International Language, be it understood as a homogeneous entity (one language with an international role [EIL]) or a heterogeneous one (different varieties (WE or ELF) grouped under one label, «English») as well as on the implications of this «globalising» status for its teaching in non-native settings. Given the complexity of this phenomenon, whose study is still in its infancy, we attempt neither to provide definitive answers nor adopt a prescriptive attitude, but simply contribute to the discussion and clarification of this, to some extent, emergent, controversial situation.
Resumo:
v.16:no.2(1966)