955 resultados para donor acceptor pair
Resumo:
Engineering the position of the lowest triplet state (T-1) relative to the first excited singlet state (S-1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S-1 and T-1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 x 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors. (C) 2014 AIP Publishing LLC.
Resumo:
Tetracene is an important conjugated molecule for device applications. We have used the diagrammatic valence bond method to obtain the desired states, in a Hilbert space of about 450 million singlets and 902 million triplets. We have also studied the donor/acceptor (D/A)-substituted tetracenes with D and A groups placed symmetrically about the long axis of the molecule. In these cases, by exploiting a new symmetry, which is a combination of C-2 symmetry and electron-hole symmetry, we are able to obtain their low-lying states. In the case of substituted tetracene, we find that optically allowed one-photon excitation gaps reduce with increasing D/A strength, while the lowest singlet triplet gap is only wealdy affected. In all the systems we have studied, the excited singlet state, S-i, is at more than twice the energy of the lowest triplet state and the second triplet is very close to the S-1 state. Thus, donor-acceptor-substituted tetracene could be a good candidate in photovoltaic device application as it satisfies energy criteria for singlet fission. We have also obtained the model exact second harmonic generation (SHG) coefficients using the correction vector method, and we find that the SHG responses increase with the increase in D/A strength.
Resumo:
Donor-acceptor (D-A) conjugated polymers have attracted a good deal of attention in recent years. In D-A systems, the introduction of electron withdrawing groups reduces E-g by lowering the LUMO levels whereas, the introduction of electron donating groups reduces E-g by raising the HOMO levels. Also, conjugated polymers with desired HOMO and LUMO energy levels could be obtained by the proper selection of donor and acceptor units. Because of this reason, D-A conjugated polymers are emerging as promising materials particularly for polymer light emitting diodes (PLEDs) and polymer solar cells (PSCs). We report the design and synthesis of four new narrow band gap donor-acceptor (D-A) conjugated polymers, PTCNN, PTCNF, PTCNV and PTCNO, containing electron donating 3,4-didodecyloxythiophene and electron accepting cyanovinylene units. The effects of further addition of electron donating and electron withdrawing groups to the repeating unit of a D-A conjugated polymer (PTCNN) on its optical and electrochemical properties are discussed. The studies revealed that the nature of D and A units as well as the extent of alternate D-A structure influences the optical and the electrochemical properties of the polymers. All the polymers are thermally stable up to a temperature of 300 degrees C under nitrogen atmosphere. The electrochemical studies revealed that the polymers possess low-lying HOMO energy levels and low-lying LUMO energy levels. In the UV-Vis absorption study, the polymer films displayed broad absorption in the wavelength region of 400-700 nm. The polymers exhibited low optical band gaps in the range 1.70 - 1.77 eV.
Resumo:
A new series of donor-acceptor-donor (D-A-D) type luminescent mesogens carrying 2-methoxy-3-cyanopyridine as a central core linked with variable alkoxy chain lengths (m = 6 and 8) as terminal substituents was synthesized and characterized using spectral methods. The newly synthesized molecules were subjected to single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), differential scanning calorimetric (DSC), polarizing optical microscopy (POM), and fluorescence emission studies in order to ascertain their mesogenic and photophysical properties. The SCXRD data on 4a and 4b reveal that the presence of short intermolecular contacts, viz. C-H center dot center dot center dot N, C-H center dot center dot center dot O, C-H center dot center dot center dot pi, and pi center dot center dot center dot pi interactions, is responsible for their crystal packing. The measured torsion angle values indicate that molecules possess distorted non-planar structure. The DSC, POM, and PXRD studies confirm that all the molecules show thermotropic liquid crystalline behaviour and exhibit rectangular columnar phase. Further, their UV-visible and fluorescence spectral studies reveal that the target molecules are luminescent displaying a strong absorption band in the range of 335-340 nm and a blue fluorescence emission band in the range of 395-425 nm (both in solution and film state) with good fluorescence quantum yields (10-49 %).
Resumo:
There is a growing need to understand the factors that control the formation of different yet related multicomponent adducts such as cocrystals, solid solutions and eutectics from both fundamental and application perspectives. Benzoic acid and its structural analogues, having gradation in inductive force strengths, are found to serve as excellent coformers to comprehend the formation of above adducts with the antiprotozoal drug ornidazole. The combination of the drug with para-amino and -hydroxybenzoic acids resulted in cocrystals in accordance with the induction strength complementarity between the participant hydrogen bond donor-acceptor groups. The lack of adequate inductive forces for combinations with benzoic acid and other coformers was exploited to make eutectics of the drug. The isomorphous/isostructural relationship between para-amino and -hydroxybenzoic acid-drug cocrystals was utilized to make solid solutions, i.e. solid solutions of cocrystals. All in all, we successfully steered and expanded the supramolecular solid-form space of ornidazole.
Resumo:
In the present work, electrospraying of an organic molecule is carried out using various solvents, obtaining fibril structures along with a range of distinct morphologies. Solvent characteristics play a major role in determining the morphology of the organic material. A thiophene derivative (7,9-di(thiophen-2-yl)-8H-cyclopentaa]acenaphthylen-8-one) (DTCPA) of donor-acceptor-donor (DAD) architecture is used to study this solvent effect. Seven solvents with decreasing vapour pressure are selected for experiments. Electrospraying is conducted at a solution concentration of 1.5 wt% and a constant applied voltage of 15 kV. Gradual transformation in morphology of the electrospun product from spiked-spheres to only spikes is observed. A mechanism describing this transformation is proposed based on electron micrograph analysis and XRD analysis. These data indicate that the morphological change is due to the synergistic effect of both vapour pressure and dielectric constant of the solvents. Through a reasonable control of the crystallite size and morphology along with the proposal of the transformation mechanism, this study elucidates electrospraying as a prospective method for designing architectures in organic electronics.
Resumo:
Molecular organization of donor and acceptor chromophores in self-assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light-harvesting systems. With this in mind, a redox-active porous interpenetrated metal-organic framework (MOF), {Cd(bpdc)(bpNDI)]4.5H(2)ODMF}(n) (1) has been constructed from a mixed chromophoric system. The -oxo-bridged secondary building unit, {Cd-2(-OCO)(2)}, guides the parallel alignment of bpNDI (N,N-di(4-pyridyl)-1,4,5,8-naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH(2)=4,4-biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter-net electron transfer. Encapsulation of electron-donating aromatic molecules in the electron-deficient channels of 1 leads to a perfect donor-acceptor co-facial organization, resulting in long-lived charge-separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.
Resumo:
If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor (I) is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate (I) as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric 0-H. ``.0 bonds R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the 0-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total (I) as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization (D(R), used previously to determine bond lengths. (C) 2015 AIP Publishing LLC.
Resumo:
Three vinylene linked diketopyrrolopyrrole based donor acceptor (D-A) copolymers have been synthesized with phenyl, thienyl, and selenyl units as donors. Optical and electronic properties were investigated with UV-vis absorption spectroscopy, cyclic voltammetry, near edge X-ray absorption spectroscopy, organic field effect transistor (OFET) measurements, and density functional theory (DFT) calculations. Optical and electrochemical band gaps decrease in the order phenyl, thienyl, and selenyl. Only phenyl-based polymers are nonplanar, but the main contributor to the larger band gap is electronic, not structural effects. Thienyl and selenyl polymers exhibit ambipolar charge transport but with higher hole than electron mobility. Experimental and theoretical results predict the selenyl system to have the best transport properties, but OFET measurements prove the thienyl system to be superior with p-channel mobility as high as 0.1 cm(2) V-1 s(-1).
Resumo:
Three new triarylborane conjugated dicyanovinyl chromophores (Mes(2)B-pi-donor-DCV); donor: N-methyldiphenylamine (1) and triphenylamine (2 and 3 with two BMes(2) substitutions]) of type A-D-A (acceptor-donor- acceptor) are reported. Compounds 1-3 exhibit intense charge transfer (CT) absorption bands in the visible region. These absorption peaks are combination CT bands of the amine donor to both the BMes(2) and DCV units. This inference was supported by theoretical studies. Compound 1 shows weak fluorescence compared to 2 and 3. The discrimination of fluoride and cyanide ions is essential in the case of triarylborane (TAB) based anion sensors as a similar response is given towards both the anions. Anion binding studies of 1, 2 and 3 showed that fluoride ions bind selectively to the boron centre and block the corresponding CT transition (donor to BMes(2)) leaving the other CT transition to be red shifted. On the other hand, cyanide ions bind with both the receptor sites and stop both the CT transition processes and hence a different colorimetric response was noted. The binding of F-/CN- induces colour changes in the visible region of the electronic spectra of 2 and 3, which allows for the naked-eye detection of F- and CN- ions. The anion binding mechanisms are established using NMR titration experiments.
Resumo:
A new triphenylamine-based organometallic Pt-II luminogen (1) and its analogous organic compound (2) are reported. The molecules are decorated with aldehyde functionality to improve their photophysical properties by utilising donor-acceptor interactions. The single crystal X-ray structure analysis of PtII analogue 1 revealed that the neighbouring molecules were loosely organised by weak intermolecular C-H center dot center dot center dot pi interactions. Because of the twisted nature of the triphenylamine backbone the compounds showed aggregation-induced emission enhancement in THF/water mixture. Due to their loose crystal packing, upon application of external stimuli these luminogens exhibited mechano-fluorochromic behaviour. The crystalline forms of the compounds displayed a more superior emission efficiency than the grinded samples. Moreover, the compounds showed crystallization-induced emission enhancement (CIEE) and exhibited chemodosimetric response towards cysteine under physiological condition.
Resumo:
Hitherto, electron transfer (ET) between redox proteins has been deemed to occur via donor-acceptor binding, and diffusible reactive species are considered as deleterious side-products in such systems. Herein, ET from cytochrome P450 reductase (CPR, an animal membrane flavoprotein) and horseradish peroxidase (HRP, a plant hemoprotein) to cytochrome c (Cyt c, a soluble animal hemoprotein) was probed under diverse conditions, using standard assays. ET in the CPR-Cyt c system was critically inhibited by cyanide and sub-equivalent levels of polar one-electron cyclers like copper ions, vitamin C/Trolox and superoxide dismutase. In the presence of lipids, inhibition was also afforded by amphipathic molecules vitamin E, palmitoyl-vitamin C and the membrane hemoprotein, cytochrome b(5). Such nonspecific inhibition (by diverse agents in both aqueous and lipid phases) indicated that electron transfer/relay was effected by small diffusible agents, whose lifetimes are shortened by the diverse radical scavengers. When CPR was retained in a dialysis membrane and Cyt c presented outside in free solution, ET was still observed. Further, HRP (taken at nM levels) catalyzed oxidation of a phenolic substrate was significantly inhibited upon the incorporation of sub-nM levels of Cyt c. The findings imply that CPR-Cyt c or HRP-Cyt c binding is not crucial for ET. Further, fundamental quantitative arguments (based on diffusion/collision) challenge the erstwhile protein-protein binding-assisted ET hypothesis. It is proven beyond reasonable doubt that mobile and diffusible electron carriers (ions and radicals) serve as ``redox-relay agents'' in the biological ET models/setup studied.
Resumo:
The condensation of phenanthroline-5,6-dione (phendione) with polyamines is a versatile synthetic route to a wide variety of chelating ligands. Condensation with 2,3- napthalene diamine gives benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (bdppz) a ligand containing weakly-coupled orbitals of benzophenazine (bpz) and 2,2' -bipyridinde(bpy) character. The bpy character gives Re and Ru complexes excited-state redox properties; intramolecular electron transfer (ET) takes place to the bpz portion of the ligand. The charge-separated state so produced has an extraordinarily-long 50 µs lifetime. The slow rate of charge recombination arises from a combination of extremely weak coupling between the metal center and the bpz acceptor orbital and Marcus "inverted region" behavior. Molecular orbital calculations show that only 3% the electron density in the lowest unoccupied molecular orbital lies on the bpy atoms of bdppz, effectively trapping the transferred electron on the bpz portion. The rate of charge recombination decreases with increasing driving force, showing that these rates lie in the inverted region. Comparison of forward and back ET rates shows that donor-acceptor coupling is four orders of magnitude greater for photoinduced electron transfer than it is for thermal charge recombination.
Condensation of phendione with itself or tetramines gives a series of binucleating tetrapyridophenazine ligands of incrementally-varying coordination-site separation. When a photoredox-active metal center is attached, excited-state energy and electron transfer to an acceptor metal center at the other coordination site can be studied as a function of distance. A variety of monometallic and homo- and heterodimetallic tetrapyridophenazine complexes has been synthesized. Electro- and magnetochemistry show that no ground-state interaction exists between the metals in bimetallic complexes. Excited-state energy and electron transfer, however, takes place at rates which are invariant with increasing donor-acceptor separation, indicating that a very efficient coupling mechanism is at work. Theory and experiment have suggested that such behavior might exist in extended π-systems like those presented by these ligands.
Condensation of three equivalents of 4,5-dimethyl-1,2-phenylenediamine with hexaketocyclohexane gives the trinucleating ligand hexaazahexamethyltrinapthalene (hhtn). Attaching two photredox-active metal centers and a third catalytic center to hhtn provides means by which multielectron photocatalyzed reactions might be carried out. The coordination properties of hhtn have been examined; X-ray crystallographic structure determination shows that the ligand's constricted coordination pocket leads to distorted geometries in its mono- and dimetallic derivatives.
Resumo:
The rate of electron transport between distant sites was studied. The rate depends crucially on the chemical details of the donor, acceptor, and surrounding medium. These reactions involve electron tunneling through the intervening medium and are, therefore, profoundly influenced by the geometry and energetics of the intervening molecules. The dependence of rate on distance was considered for several rigid donor-acceptor "linkers" of experimental importance. Interpretation of existing experiments and predictions for new experiments were made.
The electronic and nuclear motion in molecules is correlated. A Born-Oppenheimer separation is usually employed in quantum chemistry to separate this motion. Long distance electron transfer rate calculations require the total donor wave function when the electron is very far from its binding nuclei. The Born-Oppenheimer wave functions at large electronic distance are shown to be qualitatively wrong. A model which correctly treats the coupling was proposed. The distance and energy dependence of the electron transfer rate was determined for such a model.
Resumo:
The subject of this thesis is electronic coupling in donor-bridge-acceptor systems. In Chapter 2, ET properties of cyanide-bridged dinuclear ruthenium complexes were investigated. The strong interaction between the mixed-valent ruthenium centers leads to intense metal-to-metal charge transfer bands (MMCT). Hush analysis of the MMCT absorption bands yields the electronic-coupling strength between the metal centers (H_(AB)) and the total reorganization energy (λ). Comparison of ET kinetics to calculated rates shows that classical ET models fail to account for the observed kinetics and nuclear tunneling must be considered.
In Chapter 3, ET rates were measured in four ruthenium-modified highpotential iron-sulfur proteins (HiPIP), which were modified at position His50, His81, His42 and His18, respectively. ET kinetics for the His50 and His81 mutants are a factor of 300 different, while the donor-acceptor separation is nearly identical. PATHWAY calculations corroborate these measurements and highlight the importance of structural detail of the intervening protein matrix.
In Chapter 4, the distance dependence of ET through water bridges was measured. Photoinduced ET measurements in aqueous glasses at 77 K show that water is a poor medium for ET. Luminescence decay and quantum yield data were analyzed in the context of a quenching model that accounts for the exponential distance dependence of ET, the distance distribution of donors and acceptors embedded in the glass and the excluded volumes generated by the finite sizes of the donors and acceptors.
In Chapter 5, the pH-dependent excited state dynamics of ruthenium-modified amino acids were measured. The [Ru(bpy)_(3)] ^(2+) chromophore was linked to amino acids via an amide linkage. Protonation of the amide oxygen effectively quenches the excited state. In addition. time-resolved and steady-state luminescence data reveal that nonradiative rates are very sensitive to the protonation state and the structure of the amino acid moiety.