991 resultados para distributed manufacturing
Resumo:
The concept of Six Sigma was initiated in the 1980s by Motorola. Since then it has been implemented in several manufacturing and service organizations. Till now Six Sigma implementation is mostly limited to healthcare and financial services in private sector. Its implementation is now gradually picking up in services such as call center, education, construction and related engineering etc. in private as well as public sector. Through a literature review, a questionnaire survey, and multiple case study approach the paper develops a conceptual framework to facilitate widening the scope of Six Sigma implementation in service organizations. Using grounded theory methodology, this study develops theory for Six Sigma implementation in service organizations. The study involves a questionnaire survey and case studies to understand and build a conceptual framework. The survey was conducted in service organizations in Singapore and exploratory in nature. The case studies involved three service organizations which implemented Six Sigma. The objective is to explore and understand the issues highlighted by the survey and the literature. The findings confirm the inclusion of critical success factors, critical-to-quality characteristics, and set of tools and techniques as observed from the literature. In case of key performance indicator, there are different interpretations about it in literature and also by industry practitioners. Some literature explain key performance indicator as performance metrics whereas some feel it as key process input or output variables, which is similar to interpretations by practitioners of Six Sigma. The response of not relevant and unknown to us as reasons for not implementing Six Sigma shows the need for understanding specific requirements of service organizations. Though much theoretical description is available about Six Sigma, but there has been limited rigorous academic research on it. This gap is far more pronounced about Six Sigma implementation in service organizations, where the theory is not mature enough. Identifying this need, the study contributes by going through theory building exercise and developing a conceptual framework to understand the issues involving its implementation in service organizations.
Resumo:
The following paper presents insights found during an ongoing industry engagement with a family-owned manufacturing SME in Australia. The initial findings presented as a case study look at the opportunities available to the firm engaging in a design led approach to innovation. Over the period of one year, the first author’s immersion within the firm seeks to unpack the cultural, strategic, product opportunities and challenges when adopting design led innovation. This can provide a better understanding of how a firm can more effectively assess their value proposition in the market and what factors of the business are imperative in stimulating competitive difference. The core insight identified from this paper is that design led innovation cannot be seen and treated as a discrete event, nor a series of steps or stages; rather the whole business model needs to be in focus to achieve holistic, sustainable innovation. Initial insights were found through qualitative interviews with internal employees including: overcoming silos; moving from reactive to proactive design; empowerment; vision for growth and the framing of innovation.
Resumo:
Today’s highly competitive market influences the manufacturing industry to improve their production systems to become the optimal system in the shortest cycle time as possible. One of most common problems in manufacturing systems is the assembly line balancing problem. The assembly line balancing problem involves task assignments to workstations with optimum line efficiency. The line balancing technique, namely “COMSOAL”, is an abbreviation of “Computer Method for Sequencing Operations for Assembly Lines”. Arcus initially developed the COMSOAL technique in 1966 [1], and it has been mainly applied to solve assembly line balancing problems [6]. The most common purposes of COMSOAL are to minimise idle time, optimise production line efficiency, and minimise the number of workstations. Therefore, this project will implement COMSOAL to balance an assembly line in the motorcycle industry. The new solution by COMSOAL will be used to compare with the previous solution that was developed by Multi‐Started Neighborhood Search Heuristic (MSNSH), which will result in five aspects including cycle time, total idle time, line efficiency, average daily productivity rate, and the workload balance. The journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” will be used as the case study for this project [5].
Resumo:
The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.
Resumo:
Implementing educational reform requires partnerships, and university-school collaborations in the form of investigative and experimental projects can aim to determine the practicalities of reform. However, there are funded projects that do not achieve intended outcomes. In the context of a new reform initiative in education, namely, science, technology, engineering and mathematics (STEM) education, this article explores the management of a government-funded project. In a university school partnership for STEM education, how can leadership be distributed for achieving project outcomes? Participants included university personnel from different STEM areas, school teachers and school executives. Data collected included observations, interviews, resource materials, and video and photographic images. Findings indicated that leadership roles were distributed and selfactivated by project partners according to their areas of expertise and proximal activeness to the project phases, that is: (1) establishing partnerships; (2) planning and collaboration; (3) project implementation; and (4) project evaluation and further initiatives. Leadership can be intentional and unintentional within project phases, and understanding how leadership can be distributed and selfactivated more purposefully may aid in generating more expedient project outcomes.
Resumo:
The symbolic and improvisational nature of Livecoding requires a shared networking framework to be flexible and extensible, while at the same time providing support for synchronisation, persistence and redundancy. Above all the framework should be robust and available across a range of platforms. This paper proposes tuple space as a suitable framework for network communication in ensemble livecoding contexts. The role of tuple space as a concurrency framework and the associated timing aspects of the tuple space model are explored through Spaces, an implementation of tuple space for the Impromptu environment.
Resumo:
Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.
Resumo:
Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.
Resumo:
This paper examines the rapid and ad hoc development and interactions of participative citizen communities during acute events, using the examples of the 2011 floods in Queensland, Australia, and the global controversy surrounding Wikileaks and its spokesman, Julian Assange. The self-organising community responses to such events which can be observed in these cases bypass or leapfrog, at least temporarily, most organisational or administrative hurdles which may otherwise frustrate the establishment of online communities; they fast-track the processes of community development and structuration. By understanding them as a form of rapid prototyping, e-democracy initiatives can draw important lessons from observing the community activities around such acute events.
Resumo:
Distributed space-time coding (DSTC) exploits the concept of cooperative diversity and space-time coding to offer a powerful bandwidth efficient solution with improved diversity. In this paper, we evaluate the performance of DSTC with slotted amplify-and-forward protocol (SAF). Relay nodes between the source and the destination nodes are grouped into two relay clusters based on their respective locations and these relay clusters cooperate to transmit the space-time coded signal to the destination node in different time frames. We further extend the proposed Slotted-DSTC to Slotted DSTC with redundant code (Slotted-DSTC-R) protocol where the relay nodes in both relay clusters forward the same space-time coded signal to the destination node to achieve a higher diversity order.
Resumo:
The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.
Resumo:
Given the paradigm of smart grid as the promising backbone for future network, this paper uses this paradigm to propose a new coordination approach for LV network based on distributed control algorithm. This approach divides the LV network into hierarchical communities where each community is controlled by a control agent. Different level of communication has been proposed for this structure to control the network in different operation modes.
Resumo:
Background Failure to convey time-critical information to team members during surgery diminishes members’ perception of the dynamic information relevant to their task, and compromises shared situational awareness. This research reports the dialog around clinical decisions made by team members in the time-pressured and high-risk context of surgery, and the impact of these communications on shared situational awareness. Methods Fieldwork methods were used to capture the dynamic integration of individual and situational elements in surgery that provided the backdrop for clinical decisions. Nineteen semi structured interviews were performed with 24 participants from anaesthesia, surgery, and nursing in the operating rooms of a large metropolitan hospital in Queensland, Australia. Thematic analysis was used. Results: The domain “coordinating decisions in surgery” was generated from textual data. Within this domain, three themes illustrated the dialog of clinical decisions, i.e., synchronizing and strategizing actions, sharing local knowledge, and planning contingency decisions based on priority. Conclusion Strategies used to convey decisions that enhanced shared situational awareness included the use of “self-talk”, closed-loop communications, and “overhearing” conversations that occurred at the operating table. Behaviours’ that compromised a team’s shared situational awareness included tunnelling and fixating on one aspect of the situation.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
The well-established under-frequency load shedding (UFLS) is deemed to be the last of effective remedial measures against a severe frequency decline of a power system. With the ever-increasing size of power systems and the extensive penetration of distributed generators (DGs) in power systems, the problem of developing an optimal UFLS strategy is facing some new challenges. Given this background, an optimal UFLS strategy for a distribution system with DGs and load static characteristics taken into consideration is developed. Based on the frequency and the rate of change of frequency, the presented strategy consists of several basic rounds and a special round. In the basic round, the frequency emergency can be alleviated by quickly shedding some loads. In the special round, the frequency security can be maintained, and the operating parameters of the distribution system can be optimized by adjusting the output powers of DGs and some loads. The modified IEEE 37-node test feeder is employed to demonstrate the essential features of the developed optimal UFLS strategy in the MATLAB/SIMULINK environment.