970 resultados para distributed coupled resonator bandpass filter principles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper extends the authors' earlier work which adapted robust multiplexed MPC for application to distributed control of multi-agent systems with non-interacting dynamics and coupled constraint sets in the presence of persistent unknown, but bounded disturbances. Specifically, we propose exploiting the single agent update nature of the multiplexed approach, and fix the update sequence to enable input move-blocking and increased discretisation rates. This permits a higher rate of individual policy update to be achieved, whilst incurring no additional computational cost in the corresponding optimal control problems to be solved. A disturbance feedback policy is included between updates to facilitate finding feasible solutions. The new formulation inherits the property of rapid response to disturbances from multiplexing the control and numerical results show that fixing the update sequence does not incur any loss in performance. © 2011 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a numerical study of the impact of process-induced variations on the achievable motional resistance Rx of one-dimensional, cyclic and cross-coupled architectures of electrostatically transduced MEMS resonators operating in the 250 kHz range. Monte Carlo numerical simulations which accounted for up to 0.75% variation in critical resonator feature sizes were initiated on 1, 2, 3, 4, 5 and 9 coupled MEMS resonators for three distinct coupling architectures. Improvements of 100X in the spread of Rx and 2.7X in mean achievable Rx are reported for the case of 9 resonators when implemented in the cross-coupled topology, as opposed to the traditional one-dimensional chain. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been much recent interest in engineering the phenomenon of synchronization in coupled micro-/nano-scale oscillators for applications ranging from precision time and frequency references to new approaches to information processing. This paper presents descriptive modelling detail and further experimental validation of the phenomenon of mutual synchronization in coupled MEMS oscillators building upon recent experimental validation of this concept by the present authors. In particular, the underlying dependence of the observation of synchronization on system parameters is studied through numerical and analytical modelling while considering essential nonlinearities in both the resonator and circuit domain. Experimental results demonstrating synchronized response are elaborated based on the realization of electrically coupled MEMS resonator based square-wave oscillators. The experimental results on frequency entrainment are found to be in general agreement with results obtained through analytical modeling and numerical simulation. The concept presented here is scalable and could be used to investigate the dynamics of large-arrays of coupled MEMS oscillators. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Directional emission InP/AlGaInAs square-resonator microlasers with a side length of 20 mu m are fabricated by standard photolithography and inductively coupled-plasma etching technique. Multimode resonances with about seven distinct mode peaks in a free-spectral range are observed from 1460 to 1560 nm with the free-spectral range of 12.1 nm near the wavelength of 1510 nm, and the mode refractive index versus the photon energy E (eV) as 3.07152+0.18304E are obtained by fitting the laser spectra with an analytical mode wavelength formula derived by light ray method. In addition, mode field pattern is simulated for cold cavity by two dimensional finite-difference time-domain technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1550 nm AlGaInAs/InP long rectangle resonator lasers with three sides surrounded by SiO2 and p electrode layers are fabricated by planar technology, and room-temperature continuous-wave lasing is realized for a laser with a length of 53 mu m and a width of 2 mu m. Multiple peaks with wavelength intervals of Fabry-Perot mode intervals and mode Q factors of about 400 and a lasing mode with a Q factor over 8000 are observed from the lasing spectrum at threshold current. The numerical results of the FDTD simulation indicate that the lasing mode may be a whispering-gallery mode, which is a coupled mode of two high-order transverse modes of the waveguide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled microcircular resonators tangentially coupled to a bus waveguide, which is between the resonators, are numerically investigated by the finite-difference time-domain technique. For symmetrically coupled microcircular resonators with refractive index of 3.2, radius of 2 mu m, and width of the bus waveguide of 0.4 mu m, a mode Q factor of the order of 105 is obtained for a mode at the frequency of 243 THz. An output coupling efficiency of as high as 0.99 is calculated for a mode with a Q factor ranging from 10(3) to 10(4). The mode Q factor is 2 orders larger than that of the modes confined in a single circular resonator tangentially coupled to the same bus waveguide. Furthermore, the high Q traveling modes in the coupled microcircular resonators are suitable for optical single processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcylinder resonators with multiple ports connected to waveguides are investigated by 2D finite-difference time-domain (FDTD) simulation for realizing microlasers with multiple outputs. For a 10 mu m radius microcylinder with a refractive index of 3.2 and three 2 mu m wide waveguides, confined mode at the wavelength of 1542.3 nm can have a mode Q factor of 6.7 x 10(4) and an output coupling efficiency of 0.76. AlGaInAs/InP microcylinder lasers with a radius of 10 mu m and a 2 mu m wide output waveguide are fabricated by planar processing techniques. Continuous-wave electrically injected operation is realized with a threshold current of 4 mA at room temperature, and the jumps of output power are observed accompanying a lasing mode transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InP/GaInAsP square-resonator microlasers with an output waveguide connected to the midpoint of one side of the square are fabricated by standard photolithography and inductively-coupled-plasma etching technique. For a 20-mu m-side square microlaser with a 2-mu m-wide output waveguide, cw threshold current is 11 mA at room temperature, and the highest mode Q factor is 1.0 X 10(4) measured from the mode linewidth at the injection current of 10 mA. Multimode oscillation is observed with the lasing mode wavelength 1546 nm and the side-mode suppression ratio of 20 dB at the injection current of 15 mA. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of rutile TiO2 quantum dots (QDs) are investigated via the first-principles band structure method. We first propose a model to passivate the rutile TiO2 surfaces for the local density approximation calculations. In this model pseudohydrogen atoms are used to passivate the surface dangling bonds, which remove the localized in-cap surface states in the TiO2 QDs. As the size of the QD decreases, the band gap evolves as E-g(dot) = E-g(bulk) + 73.70/d(1.93), where E-g(dot) and d are the band gap and diameter of the QD, and E-g(bulk) is the band gap of the bulk rutile TiO2. The valence band maximum and the conduction band minimum states of the QDs are distributed mostly in the interior of the QDs, and they well inherit the atomic characteristics of those states of the bulk rutile TiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-performance microring resonator in a silicon-on-insulator rib waveguide is realized by using the electron beam lithography followed by inductively coupled plasma etching. The design and the experimental realization of this device are presented in detail. In addition to improving relevant processes to minimize propagation loss, the coupling efficiency between the ring and the bus is carefully chosen to approach a critical coupling for high performance operating. We have measured a quality factor of 21,200 and an extinction ratio of 12.5dB at a resonant wavelength of 1549.32nm. Meanwhile, a low propagation loss of 0.89dB/mm in a curved waveguide with a bending radius of 40 mu m is demonstrated as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports that the complex-coupled distributed feedback laser with the sampled grating has been designed and fabricated. The +1st order reflection of the sampled grating is utilized for laser single mode operation, which is 1.5387 mu m in the experiment. The typical threshold current of the device is 30 mA, and the optical output power is about 10 mW at the injection current of 100 mA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of equilateral-triangle resonator (ETR) and square resonator microlasers are reported, which are potential light sources in the photonic integrations. Based on the numerical simulations, we find that high-efficiency directional emission can be achieved for the triangle and square microlasers by directly connecting an output waveguide to the resonators. The electrically injected InP/InGaAsP ETR and square resonator microlasers with a 2-mu m-wide output waveguide were fabricated by standard photolithography and inductively coupled plasma etching techniques. Room-temperature continuous-wave (CW) operations were achieved for the ETR microlasers with the side length from 10 to 30 mu m and the square resonator microlasers with the side length of 20 mu m. The output power versus CW injection current and the laser spectra are presented for an ETR microlaser up to 310 K and a square resonator microlaser to 305 K. The lasing spectra with mode wavelength intervals as that of whispering-gallery-type modes and Fabry-Perot modes are observed for two square lasers, which can lase at low temperature and room temperature, respectively.