902 resultados para directed polymers in random environment
Resumo:
This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection.
Resumo:
Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.
Resumo:
While others have attempted to determine, by way of mathematical formulae, optimal resource duplication strategies for random walk protocols, this paper is concerned with studying the emergent effects of dynamic resource propagation and replication. In particular, we show, via modelling and experimentation, that under any given decay (purge) rate the number of nodes that have knowledge of particular resource converges to a fixed point or a limit cycle. We also show that even for high rates of decay - that is, when few nodes have knowledge of a particular resource - the number of hops required to find that resource is small.
Resumo:
Since molecularly imprinted polymers (MIPs) are designed to have a memory for their molecular templates it is easy to draw parallels with the affinity between biological receptors and their substrates. Could MIPs take the place of natural receptors in the selection of potential drug molecules from synthetic compound libraries? To answer that question this review discusses the results of MIP studies which attempt to emulate natural receptors. In addition the possible use of MIPs to guide a compound library synthesis towards a desired biological activity is highlighted. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this work is to gain knowledge on kinetics of biomass decomposition under oxidative atmospheres, mainly examining effect of heating rate on different biomass species. Two sets of experiments are carried out: the first set of experiments is thermal decomposition of four different wood particles, namely aspens, birch, oak and pine under an oxidative atmosphere and analysis with TGA; and the second set is to use large size samples of wood under different heat fluxes in a purpose-built furnace, where the temperature distribution, mass loss and ignition characteristics are recorded and analyzed by a data post-processing system. The experimental data is then used to develop a two-step reactions kinetic scheme with low and high temperature regions while the activation energy for the reactions of the species under different heating rates is calculated. It is found that the activation energy of the second stage reaction for the species with similar constituent fractions tends to converge to a similar value under the high heating rate.
Resumo:
We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schrödinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg–de-Vries and the nonlinear Schrödinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.
Resumo:
Cadmium has been widely used in various industries for the past fifty years, with current world production standing at around 16,755 tonnes per year. Very little cadmium is ever recycled and the ultimate fate of all cadmium is the environment. In view of reports that cadmium in the environment is increasing, this thesis aims to identify population groups 'at risk' of receiving dietary intakes of cadmium up to or above the current Food and Agricultural Organisation/World Health Organisation maximum tolerable intake of 70 ug/day. The study involves the investigation of one hundred households (260 individuals) who grow a large proportion of their vegetable diet in garden soils in the Borough of Walsall, part of an urban/industrial area in the United Kingdom. Measurements were made of the cadmium levels in atmospheric deposition, soil, house dust, diet and urine from the participants. Atmospheric deposition of cadmium was found to be comparable with other urban/industrial areas in the European Community, with deposition rates as high as 209 g ha-1 yr-1. The garden soils of the study households were found to contain up to 33 mg kg-1 total cadmium, eleven times the highest level usually found in agricultural soils. Dietary intakes of cadmium by the residents from food were calculated to be as high as 68 ug/day. It is suggested that with intakes from other sources, such as air, adventitious ingestion, smoking and occupational exposure, total intakes of cadmium may reach or exceed the FAO/WHO limit. Urinary excretion of cadmium amongst a non-smoking, non-occupationally exposed sub-group of the study population was found to be significantly higher than that of a similar urban population who did not rely on home-produced vegetables. The results from this research indicate that present levels of cadmium in urban/industrial areas can increase dietary intakes and body burdens of cadmium. As cadmium serves no useful biological function and has been found to be highly toxic, it is recommended that policy measures to reduce human exposure on the European scale be considered.
Resumo:
This thesis includes analysis of disordered spin ensembles corresponding to Exact Cover, a multi-access channel problem, and composite models combining sparse and dense interactions. The satisfiability problem in Exact Cover is addressed using a statistical analysis of a simple branch and bound algorithm. The algorithm can be formulated in the large system limit as a branching process, for which critical properties can be analysed. Far from the critical point a set of differential equations may be used to model the process, and these are solved by numerical integration and exact bounding methods. The multi-access channel problem is formulated as an equilibrium statistical physics problem for the case of bit transmission on a channel with power control and synchronisation. A sparse code division multiple access method is considered and the optimal detection properties are examined in typical case by use of the replica method, and compared to detection performance achieved by interactive decoding methods. These codes are found to have phenomena closely resembling the well-understood dense codes. The composite model is introduced as an abstraction of canonical sparse and dense disordered spin models. The model includes couplings due to both dense and sparse topologies simultaneously. The new type of codes are shown to outperform sparse and dense codes in some regimes both in optimal performance, and in performance achieved by iterative detection methods in finite systems.