256 resultados para diopside


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to document changes in Holocene glacier extent and activity in NE Greenland (~73° N) we study marine sediment records that extend from the fjords (PS2631 and PS2640), across the shelf (PS2623 and PS2641), to the Greenland Sea (JM07-174GC). The primary bedrock geology of the source areas is the Caledonian sediment outcrop, including Devonian red beds, plus early Neoproterozoic gneisses and early Tertiary volcanics. We examine the variations in colour (CIE*), grain size, and bulk mineralogy (from X-ray diffraction of the <2 mm sediment fraction). Fjord core PS2640 in Sofia Sund, with a marked red hue, is distinct in grain size, colour and mineralogy from the other fjord and shelf cores. Five distinct grain-size modes are distinguished of which only one is associated with a coarse ice-rafting signal - this mode is rare in the mid- and late Holocene. A sediment unmixing program (SedUnMixMC) is used to characterize down-core changes in sediment composition based on the upper late Holocene sediments from cores PS2640 (Sofia Sund), PS2631 (Kaiser Franz Joseph Fjord) and PS2623 (south of Shannon Is), and surface samples from the Kara Sea (as an indicator of transport from the Russian Arctic shelves). Major changes in mineral composition are noted in all cores with possible coeval shifts centred c. 2.5, 4.5 and 7.5 cal. ka BP (±0.5 ka) but are rarely linked with changes in the grain-size spectra. Coarse IRD (>2 mm) and IRD-grain-size spectra are rare in the last 9-10 cal. ka BP and, in contrast with areas farther south (~68° N), there is no distinct IRD signal at the onset of neoglaciation. Our paper demonstrates the importance of the quantitative analysis of sediment properties in clarifying source to sink changes in glacial marine environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major-, trace-, and rare-earth element analyses are presented from a suite of basaltic rocks from the basement of the Celebes Sea. The major elements and trace-elements were determined by X-ray fluorescence techniques, and the rare-earth elements were analyzed by instrumental neutron activation analysis. Compositionally the Celebes Sea basalts are very similar to typical normal mid-ocean ridge basalts, such as those described from the Indian Ocean triple junction. Petrogenetic modeling shows that all of the basalts analyzed can be formed by 10% to 20% partial melting of a light rare-earth element-depleted spinel lherzolite followed by fractional crystallization of mixtures of olivine, Plagioclase, and iron oxide. The Celebes Sea is interpreted as a fragment of the basement of the Jurassic Argo abyssal plain trapped during the Eocene to the north of Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock samples from Hole 735B, Southwest Indian Ridge, were examined to determine the principal vein-related types of alteration that occurred, the nature of fluids that were present, and the temperatures and pressures of these fluids. Samples studied included veined metagabbro, veined mylonitic metagabbro, felsic trondhjemite, and late-stage leucocratic diopside-bearing veins. The methods used were standard petrographic analysis, mineral chemical analysis by electron microprobe, fluid inclusion petrography and analysis by heating/freezing techniques and laser Raman microspectroscopy, and oxygen isotopic analyses of mineral separates. Alteration in lithologic Units I and II (above the level of Core 118-735B-3OR; approximately 140 meters below the seafloor) is dominated by hydration by seawater-derived fluids at high temperature, up to about 700°C, and low water/rock ratio, during and immediately after pervasive ductile deformation. Below Core 118-735B-30R, pervasive deformation is less common, and brittle veining and brecciation are the major alteration styles. Leucocratic centimeter-scale veins, often containing diopside and plagioclase, were produced by interaction of hot (about 500°C) seawater-derived fluid and gabbro. The water/rock ratio was locally high at the veins and breccia zones, but the integrated water/rock ratio for the lower part of the hole is probably low. Accessory hydrous magmatic or deuteric phases formed from magmatic volatiles in some gabbro and in trondhjemite. Most subsequent alteration was affected by fluids that were seawater-derived, based on isotopic and chemical analyses of minerals and analyses of fluid inclusions. Many early-generation fluid inclusions, associated with high-temperature veining, contain appreciable methane as well as saline water. The source of methane is unclear, but it may have formed as seawater was reduced during low water/rock interaction with ultramafic upper mantle or ultramafic and mafic layer 3. Temperatures of alteration were calculated on the basis of coexisting mineral chemistry and isotopic values. Hydrothermal metamorphism commenced at about 720°C and continued to about 550°C. Leucocratic veining took place at about 500°C. Alteration within brecciated horizons was also at about 500° to less than 400°C, and the trondhjemite was altered at about 550° to below 490°C. Pressures calculated from a diopside-bearing vein, based on a combination of fluid inclusion and isotopic analysis, were 90 to 100 MPa. This pressure places the sample, from Core 118-735B-70R in Unit V, at about 2 km below the seafloor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refractory spinel peridotites were drilled during Leg 125 from two diapiric serpentinite seamounts: Conical Seamount in the Mariana forearc (Sites 778-780) and Torishima Forearc Seamount (Sites 783-784) in the Izu-Ogasawara forearc. Harzburgite is the predominant rock type in the recovered samples, with subordinate dunite; no lherzolite was found. The harzburgite is diopside-free to sparsely diopside-bearing, with modal percentages of diopside that range from 0% to 2%. Spinels in the harzburgites are chrome-rich (Cr/[Cr + Al] = 0.38-0.83; Fe3+/[Fe3+ + Cr + Al] = 0.01-0.07). Olivine and orthopyroxene are magnesian (Mg# = 0.92). Discrete diopsides reveal extreme depletion of light rare earth elements. Primary hornblende is rare. The bulk major-element chemistry shows low average values of TiO2 (trace), Al2O3 (0.55%) and CaO (0.60%), but high Mg# (0.90). These rocks are more depleted than the abyssal peridotites from the mid-oceanic ridge. They are interpreted as residues of extensive partial melting (= 30%), of which the last episode was in the mantle wedge, probably associated with the generation of incipient island-arc magma, including boninite and/or arc-tholeiite. These depleted peridotites probably represent the residues of melting within mantle diapirs that developed within the mantle wedge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gneissic granodiorite was recovered by drilling at the base of the Mazagan escarpment, 100 km west of the Casablanca, Morocco, at 4000 m water depth. Coarse, predeformative muscovite yielded dates of -515 Ma, fine-grained muscovite of -455 Ma, biotite -360 and 335 Ma, and feldspar -315 Ma. These dates are tentatively correlated with the microscopic results. We assume a minimum age of middle Cambrian for the granodiorite, an Ordovician deformation and mylonitization, and a Late Carboniferous overprint under upper greenschist facies conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron microprobe data are presented for clinopyroxenes, plagioclases, palagonites, smectites, celadonites, and zeolites in Hole 462A sheet-flow basalts and Site 585 volcaniclastic sediments. Glomerocrystic clinopyroxenes in Hole 462A are predominantly Ti-poor augites with minor fractionation to ferroaugites in rim portions. Quenched plumose clinopyroxenes show considerable variation from Ca-rich to Ca-poor augites, although all are characterized by being Tirich and Cr-poor relative to the glomerocrysts. Two differentiated series of Site 585 pyroxene compositions, calcic augite and diopside-salite, demonstrate the coexistence, in the vitric and lithic clasts, of tholeiitic and alkali basalt types, respectively. Plagioclase compositions in all samples are mainly labradorites, although some zoned Hole 462A glomerocrysts range from An73 to An20 and are characterized by high Mg and Fe contents in the more calcic varieties. The K content of the plagioclases is highest in the more sodic crystals, although the overall higher orthoclase component of Site 585 plagioclases reflects the generally higher bulk-rock K content. The compositions of both secondary smectites and celadonites are similar irrespective of the alteration location (glass, matrix, vesicles, etc.), although brown smectites replacing interstitial glass have marginally higher total Fe contents than pale green and yellow smectites. Analyzed zeolites are mainly phillipsites with variable alkali content, and, together with associated celadonite, represent late-stage alteration repositories for K under mildly oxidizing conditions. The compositions of both early and late secondary minerals are typical of those formed by the submarine alteration of basaltic rocks at low temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conglomerates and sandstones in lithologic unit V at DSDP Site 445 comprise lithic clasts, detrital minerals, bioclasts, and authigenic minerals. The lithic clasts are dominantly plagioclase-phyric basalt and microdolerite, followed by plagioclase-clinopyroxene-phyric basalt, aphyric basalt, chert, and limestone. A small amount of hornblende schist occurs. Detrital minerals are dominantly plagioclase, augite, titaniferous augite, olivine, green to pale-brown hornblende, and dark-brown hornblende, with subordinate chromian spinel, epidote, ilmenite, and magnetite, and minor amounts of diopside, enstatite, actinolite, and aegirine-augite. Bioclasts are Nummulites boninensis, Asterocyclina sp. cf. A. penuria, and some other larger foraminifers. Correlation of cored and dredged samples indicates that the Daito Ridge is mainly composed of igneous, metamorphic, ultramafic, and sedimentary rocks. The igneous rocks are mafic (probably tholeiitic) and alkalic. The metamorphic rocks are hornblende schist, tremolite schist, and diopside-chlorite schist. The ultramafic rocks are alpinetype peridotites. Mineralogical data suggest that there were two metamorphic events in the Daito Ridge. The older one was intermediate- to high-pressure metamorphism. The younger one was contact metamorphism caused by a Paleocene volcanic event, possibly related to the beginning of spreading of the west Philippine Basin. The ultramafic rocks suffered from the same contact metamorphism. During the Eocene, exposed volcanic and metamorphic rocks on the uplifted Daito Ridge may have supplied pebble clasts to the surrounding coast and shallow sea bottom. The steep slope offshore may have caused frequent slumping and transportation of the pebble clasts and shallow-water benthic organisms into deeper water, forming the conglomerates and sandstones treated here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is based on mineralogical studies of sand and silt layers from a number of Deep Sea Drilling Project sites in the Indian Ocean belonging to different physiographic provinces of different ages. The minerals can be grouped into two major associations: a hornblende-opaque association with varying amounts of pyroxene, garnet, epidote, zircon, etc. and a biotite-chlorite-muscovite assemblage. The dominance of unstable minerals indicates a first generation, though evidence of reworking is reflected in the zircon and tourmaline grains at some sites. A large variety of minerals at some sites indicates a complex source. The mineral composition is nearly homogeneous at different sites for the entire length of the core, indicating that they have been derived from the same source during the deposition of that interval. However, the provenance changed by tectonic activity, the effect of which has been reflected in the mineralogy of some sites. An attempt was made to describe the mineralogic characteristics and their tectonic interpretations in the Pliocene and Miocene periods in the Ganges and Indus fan sites and also in the Wharton and Mozambique basin sites. Similar attempts could not be made for other ages in other physiographic provinces as the numbers of samples were too few. Within the limited scope, some idea about the mineralogical character of different basins and different physiographic provinces can be obtained from the present study. Mineralogical evidence also suggests very long transport of sediments in the deep sea. Regional variation of mineralogy has resulted due to source, sea-floor configuration, selective removal, reworking by different agencies and the processes operating in the ocean. There is no relation between a particular age and a set mineral assemblage for the Cenozoic sediments of the Indian Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrologic studies of mid-ocean ridge basalt (MORB) (e.g., Melson et al., 1975; Flower, et al., 1977; Byerly and Wright, 1978; Melson, 1979; Byerly and Sinton, 1980; Thompson, 1980) show that magmatic liquid-fraction trends are indicated by the compositions of fresh glass selvedges, usually, but not always, associated with pillow basalts. In contrast, whole-rock compositional variation will often reflect the complicating effects of syn- and post-eruptive phenocryst accumulation. Additional variation may be introduced by the reaction of basalts with seawater. While comparatively severe alteration of variable type was noted locally in the young basalts recovered across the mouth of the Gulf of California on Leg 65, most of the basalts were extremely fresh, making them ideal for studies of compositional variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dolerites sampled from the lower sheeted dikes from Hole 504B during Ocean Drilling Program Legs 137 and 140, between 1562.4 and 2000.4 mbsf, were examined to document the mineralogy, petrography, and mineral parageneses associated with secondary alteration, to constrain the thermal history and composition of hydrothermal fluids. The main methods used were mineral chemical analyses by electron microprobe, X-ray diffraction, and cathodoluminescence microscopy. Temperatures of alteration were estimated on the basis of single and/or coexisting mineral chemistry. Permeability is important in controlling the type and extent of alteration in the studied dike section. At the meter-scale, intervals of weakly altered dolerites containing fresh olivine are interpreted as having experienced restricted exposure to hydrothermal fluids. At the centimeter- or millimeter-scale, alteration patches and extensively altered halos adjacent to veins reflect the permeability related to intergranular primary porosity and cracks. Most of the sheeted dike alteration in this case resulted from non-focused, pervasive fluid-rock interaction. This study confirms and extends the previous model for hydrothermal alteration at Hole 504B: hydrothermal alteration at the ridge axis followed by seawater recharge and off-axis alteration. The major new discoveries, all related to higher temperatures of alteration, are: (1) the presence of hydrothermal plagioclase (An80-95), (2) the presence of deuteric and/or hydrothermal diopside, and (3) the general increasing proportion of amphiboles, and particularly magnesio-hornblende with depth. We propose that the dolerites at Hole 504B were altered in five stages. Stage 1 occurred at high temperatures (less than 500° to 700°C) and involved late-magmatic formation of Na- and Ti-rich diopside, the hydrothermal formation of Na, Ti-poor diopside and the hydrothermal formation of an assemblage of An-rich plagioclase + hornblende. Stage 2 occurred at lower temperatures (250°-320°C) and is characterized by the appearance of actinolite, chlorite, chlorite-smectite, and/or talc (in low permeability zones) and albite. During Stage 3, quartz and epidote precipitated from evolved hydrothermal fluids at temperatures between 310° and 320°C. Anhydrite appeared during Stage 4 and likely precipitated directly from heated seawater. Stage 5 occurred off-axis at low temperatures (250°C) with laumontite and prehnite from evolved fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lower Cretaceous tholeiitic basalt cored at Site 738, on the southernmost part of the Kerguelen Plateau, shows anomalous Sr, Nd, and Pb isotopic compositions compared to other lavas from Kerguelen Island and the Kerguelen Plateau. The strongly negative value of eNd (- 8.5) and high 207Pb/204Pb ratio (15.71) reflect a long-term evolution in a source high in Nd/Sm and µ. These geochemical properties, not observed in the Indian Ocean mantle plumes (St. Paul, Kerguelen Islands), have been reported for alkali lavas erupted in East Antarctica, thus suggesting that they originate from the Gondwana subcontinental lithosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalts recovered from Sites 595 and 596 on Mesozoic crust in the southwest Pacific range from olivine-bearing tholeiites to ferrobasalts. Despite having undergone extensive low-grade alteration, which has raised K and Rb abundances, the basalts have consistent interelement ratios of Ti, Zr, Hf, rare-earth elements, Y, Th, Ik, and Nb. La/Ta (-18), Lan/Ybn (0.6), Ti/Zr (115), Zr/Nb (20), and Th/Hf (0.08) ratios all fall within the range of N-type mid-ocean-ridge basalt. The basalts from Sites 595 and 596 indicate that the Mesozoic Pacific crust was derived from a mantle source by processes similar to those operating at the present-day East Pacific Rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabasic rocks were recovered at Sites 469 and 471 on IPOD/DSDP Leg 63. The diabasic rocks are composed mainly of Plagioclase, clinopyroxene, and low-temperature alteration products. In addition to these phases, a considerable amount of primary biotite and lesser colorless amphibole are observed in some of the Site 471 diabases. Major and trace element data suggest that these rocks are tholeiitic; however, their highly altered nature obscures their petrologic affinity with the DSDP Leg 63 tholeiitic basalts and others from the nearby Pacific ocean floor. It is likely that the Site 469 and 471 diabasic rocks represent products of off-ridge intrusive activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical (atomic absorption, neutron activation analyses), mineralogical (microprobe), and radiometric (40K - 40Ar) data are presented for five basalts from the Guatemala Trench area (Deep Sea Drilling Project, Leg 84). Strong geochemical and mineralogical differences distinguish two types among these basalts: (1) One basalt (Sample 567A-19,CC), recovered below Upper Cretaceous limestone has the following characteristics: it is quartz normative and has low TiO2, content, as well as low amounts of Cr, Ni and other transition metals, an LREE depleted pattern, and affinities of clinopyroxene phenocryst plotted into the field of tholeiitic and calc-alkalic pyroxenes. (2) Four alkaline basalts, recovered from the mafic and ultramafic acoustic basement, are nepheline normative and show high TiO2 content, high amounts of Cr, Ni and so on, an LREE enriched pattern and compositions of clinopyroxene phenocryst plotted close to or within the field of alkali basalt pyroxenes. These basalts are comparable to those recognized in the lower part of the Santa Elena complex and are clearly different from the oceanic basalts of the Cocos Plate. The radiometric age of the orogenic basalt seems to be close to 80 Ma. The alkaline basalts are clearly older, even if a discrepancy appears between the results of different analyses because of the secondary effects of alteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major-, trace-, and rare-earth element analyses of the basaltic rocks recovered from the basement of the Sulu Sea and of lithic clasts from the pyroclastic unit representing the acoustic basement of the Cagayan Ridge, are presented. The major and trace elements were measured by X-ray fluorescence techniques, and rare-earth elements by instrumental neutron activation analysis. These data show that the Sulu Sea basalts are back-arc tholeiites and the lithic clasts are basalts, basaltic andesites, and andesites typical of volcanic arc suites erupted on continental crust. Petrogenetic modeling is used to show that the Sulu Sea basalts were derived from a heterogeneous mantle, probably representing subcontinental lithosphere, with contributions from a subduction component. The Sulu Sea is interpreted as a back-arc basin formed by rifting of an Oligocene to early Miocene volcanic arc leaving the Cagayan Ridge as a remnant arc. This event occurred during northward subduction of the Celebes Sea basement beneath the Oligocene to early Miocene arc.