977 resultados para diode-end-pumped
Resumo:
We report on efficient frequency upconversion in Er3+-doped fluoroindate glass. The process is observed under 1.48 μm laser diode excitation and results in fluorescence generation in the range from ultraviolet to near-infrared radiation. The study was performed for samples containing 1, 2, and 3 ErF3 mol % in the range of temperatures from 24 to 448 K. The upconverted signals were studied as a function of the laser intensity, and their dynamical behavior is described using a rate equation model which allows us to obtain the energy transfer rates between Er3+ ions in pairs and triads.
Resumo:
This paper proposal presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results of a 15kW prototype are also presented in this paper. © 2009 IEEE.
Resumo:
This paper presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results are also presented in this paper. © 2009 IEEE.
Resumo:
We report the frequency measurements of 18 optically pumped far-infrared (FIR) laser lines generated from CD3OH and (CH3OH)-C-13. We use the heterodyne technique of mixing FIR laser radiations and microwave radiation on a metal-insulator-metal point-contact tunnel diode to determine the FIR laser frequencies. Two FIR laser systems, consisting of CO2 waveguide pump lasers and Fabry-Perot FIR laser cavities, were used as optical sources. (C) 1997 Optical Society of America.
Resumo:
Pumped-storage (PS) systems are used to store electric energy as potential energy for release during peak demand. We investigate the impacts of a planned 1000 MW PS scheme connecting Lago Bianco with Lago di Poschiavo (Switzerland) on temperature and particle mass concentration in both basins. The upper (turbid) basin is a reservoir receiving large amounts of fine particles from the partially glaciated watershed, while the lower basin is a much clearer natural lake. Stratification, temperature and particle concentrations in the two basins were simulated with and without PS for four different hydrological conditions and 27 years of meteorological forcing using the software CE-QUAL-W2. The simulations showed that the PS operations lead to an increase in temperature in both basins during most of the year. The increase is most pronounced (up to 4°C) in the upper hypolimnion of the natural lake toward the end of summer stratification and is partially due to frictional losses in the penstocks, pumps and turbines. The remainder of the warming is from intense coupling to the atmosphere while water resides in the shallower upper reservoir. These impacts are most pronounced during warm and dry years, when the upper reservoir is strongly heated and the effects are least concealed by floods. The exchange of water between the two basins relocates particles from the upper reservoir to the lower lake, where they accumulate during summer in the upper hypolimnion (10 to 20 mg L−1) but also to some extent decrease light availability in the trophic surface layer.
Resumo:
We demonstrated all-fiber amplification of 11 ps pulses from a gain-switched laser diode at 1064 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 µW of fiber-coupled average output power. For the low output pulse energy of 325 fJ we have designed a multi-stage core pumped pre-amplifier in order to keep the contribution of undesired amplified spontaneous emission as low as possible. By using a novel time-domain approach for determining the power spectral density ratio (PSD) of signal to noise, we identified the optimal working point for our pre-amplifier. After the pre-amplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we reached a total gain of 73 dB, resulting in pulse energies of >5.6 µJ and peak powers of >0.5 MW. The average PSD-ratio of signal to noise we determined to be 18/1 at the output of the final amplification stage.
Resumo:
BACKGROUND: Long-term outcome and complications of diode laser cyclophotocoagulation (DCPC) may be important, since eyes, once treated with DCPC, are less likely to be subjected to other types of interventions in the further follow-up. METHODS: Retrospective review of 131 eyes of 127 patients treated from 2000 through 2004. Success was defined as intraocular pressure (IOP) at last visit 6-21 mm Hg; hypotony: IOP =5 mm Hg. RESULTS: Mean follow-up (FU) was 30.1 (SD 16.7) months. Mean number of treatment sessions per eye was 1.54, 89% of the eyes having 1 or 2 sessions; overall re-treatment rate: 38.9%. Mean total laser energy delivered per eye: 133.9 (73.7) J; mean energy per treatment episode: 86.8 (22.0) J. Eyes with 3 or more treatments (11%) had a significantly larger proportion of post-traumatic glaucoma, and patients were significantly younger. All eyes had refractory glaucomas on maximal medication, neovascular glaucoma (NVG) representing the largest subgroup (61%). IOP decreased from 36.9 (10.7) mm Hg pretreatment to 15.3 (10.4) mm Hg at the end of FU. Success was noted in 69.5% (91 eyes), failure (non-response) in 13%. Hypotony occurred in 17.6% eyes, of which 74% had NVG. Hypotony developed after mean 19.3 (11.0) months, range 6 to 36; with 96% of these eyes having received only 1 or 2 treatments; delivered energy did not differ from that in the successful eyes. CONCLUSIONS: DCPC is an efficient treatment for refractory glaucoma. Hypotony, the most common complication, may develop as late as 36 months post-treatment. Diagnostic category and age seem to influence the outcome stronger than laser protocol and delivered energy.
Resumo:
This paper studies the impact that different approaches of modeling the real-time use of the secondary regulation reserves have in the joint energy and reserve hourly scheduling of a price-taker pumped-storage hydropower plant. The unexpected imbalance costs due to the error between the forecasted real-time use of the reserves and the actual value are also studied and evaluated for the different approaches. The proposed methodology is applied to a daily-cycle and closed-loop pumped-storage hydropower plant. Preliminary results show that the deviations in the water volume at the end of the day are important when the percentage of the real-time use of reserves is unknown in advance, and also that the total income in all approaches after correcting these deviations is significantly lower than the maximum theoretical income.
Resumo:
This thesis presents a detailed, experiment-based study of generation of ultrashort optical pulses from diode lasers. Simple and cost-effective techniques were used to generate high power, high quality optical short pulses at various wavelength windows. The major achievements presented in the thesis is summarised as follows. High power pulses generation is one of the major topics discussed in the thesis. Although gain switching is the simplest way for ultrashort pulse generation, it proves to be quite effective to deliver high energy pulses on condition that the pumping pulses with extremely fast rising time and high enough amplitude are applied on specially designed pulse generators. In the experiment on a grating-coupled surface emitting laser (GCSEL), peak power as high as 1W was achieved even when its spectral bandwidth was controlled within 0.2nm. Another experiment shows violet picosecond pulses with peak power as high as 7W was achieved when the intensive electrical pulses were applied on optimised DC bias to pump on InGaN violet diode laser. The physical mechanism of this phenomenon, as we considered, may attributed to the self-organised quantum dots structure in the laser. Control of pulse quality, including spectral quality and temporal profile, is an important issue for high power pulse generation. The ways to control pulse quality described in the thesis are also based on simple and effective techniques. For instance, GCSEL used in our experiment has a specially designed air-grating structure for out-coupling of optical signals; hence, a tiny flat aluminium mirror was placed closed to the grating section and resulted in a wavelength tuning range over 100nm and the best side band suppression ratio of 40dB. Self-seeding, as an effective technique for spectral control of pulsed lasers, was demonstrated for the first time in a violet diode laser. In addition, control of temporal profile of the pulse is demonstrated in an overdriven DFB laser. Wavelength tuneable fibre Bragg gratings were used to tailor the huge energy tail of the high power pulse. The whole system was compact and robust. The ultimate purpose of our study is to design a new family of compact ultrafast diode lasers. Some practical ideas of laser design based on gain-switched and Q-switched devices are also provided in the end.
Resumo:
Mechanisms of a change in the refractive index appearing in an intensely diode-pumped Yb:YAG-laser disk element are studied with the help of polarisation interferometry and dynamic grating testing. It is found that changes in the electronic component of the refractive index arising upon changing the populations of electronic levels of Yb ions (the ground F state and the upper F level of the laser transition) and caused by the difference in the polarisability of these levels are an order of magnitude greater than thermal changes in the refractive index. It is shown that the difference Δp in the polarisability at the probe wavelength of 633 nm is 1.9 × 10 cm and at the laser transition wavelength of 1029 nm is 1.6 × 10 cm. ©2006 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.
Resumo:
We experimentally investigate three Raman fibre laser based amplification techniques with second-order bidirectional pumping. Relatively intensity noise (RIN) being transferred to the signal can be significantly suppressed by reducing first-order reflection near the input end. © 2015 OSA.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)