916 resultados para deterministic bispectrum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Public transport is one of the key promoters of sustainable urban transport. To encourage and increase public transport patronage it is important to investigate the route choice behaviours of urban public transit users. This chapter reviews the main developments of modelling urban public transit users’ route choice behaviours in a historical perspective, from the 1960s to the present time. The approaches re- viewed for this study include the early heuristic studies on finding the least-cost transit route and all-or- nothing transit assignment, the bus common lines problem, the disaggregate discrete choice models, the deterministic and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models. This chapter also provides an outlook for the future directions of modelling transit users’ route choice behaviours. Through the comparison with the development of models for motorists’ route choice and traffic assignment problems, this chapter advocates that transit route choice research should draw inspiration from the research outcomes from the road area, and that the modelling practice of transit users’ route choice should further explore the behavioural complexities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of radar was developed for the estimation of the distance (range) and velocity of a target from a receiver. The distance measurement is obtained by measuring the time taken for the transmitted signal to propagate to the target and return to the receiver. The target's velocity is determined by measuring the Doppler induced frequency shift of the returned signal caused by the rate of change of the time- delay from the target. As researchers further developed conventional radar systems it become apparent that additional information was contained in the backscattered signal and that this information could in fact be used to describe the shape of the target itself. It is due to the fact that a target can be considered to be a collection of individual point scatterers, each of which has its own velocity and time- delay. DelayDoppler parameter estimation of each of these point scatterers thus corresponds to a mapping of the target's range and cross range, thus producing an image of the target. Much research has been done in this area since the early radar imaging work of the 1960s. At present there are two main categories into which radar imaging falls. The first of these is related to the case where the backscattered signal is considered to be deterministic. The second is related to the case where the backscattered signal is of a stochastic nature. In both cases the information which describes the target's scattering function is extracted by the use of the ambiguity function, a function which correlates the backscattered signal in time and frequency with the transmitted signal. In practical situations, it is often necessary to have the transmitter and the receiver of the radar system sited at different locations. The problem in these situations is 'that a reference signal must then be present in order to calculate the ambiguity function. This causes an additional problem in that detailed phase information about the transmitted signal is then required at the receiver. It is this latter problem which has led to the investigation of radar imaging using time- frequency distributions. As will be shown in this thesis, the phase information about the transmitted signal can be extracted from the backscattered signal using time- frequency distributions. The principle aim of this thesis was in the development, and subsequent discussion into the theory of radar imaging, using time- frequency distributions. Consideration is first given to the case where the target is diffuse, ie. where the backscattered signal has temporal stationarity and a spatially white power spectral density. The complementary situation is also investigated, ie. where the target is no longer diffuse, but some degree of correlation exists between the time- frequency points. Computer simulations are presented to demonstrate the concepts and theories developed in the thesis. For the proposed radar system to be practically realisable, both the time- frequency distributions and the associated algorithms developed must be able to be implemented in a timely manner. For this reason an optical architecture is proposed. This architecture is specifically designed to obtain the required time and frequency resolution when using laser radar imaging. The complex light amplitude distributions produced by this architecture have been computer simulated using an optical compiler.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a severe tendency in cyberlaw theory to delegitimize state intervention in the governance of virtual communities. Much of the existing theory makes one of two fundamental flawed assumptions: that communities will always be best governed without the intervention of the state; or that the territorial state can best encourage the development of communities by creating enforceable property rights and allowing the market to resolve any disputes. These assumptions do not ascribe sufficient weight to the value-laden support that the territorial state always provides to private governance regimes, the inefficiencies that will tend to limit the development utopian communities, and the continued role of the territorial state in limiting autonomy in accordance with communal values. In order to overcome these deterministic assumptions, this article provides a framework based upon the values of the rule of law through which to conceptualise the legitimacy of the private exercise of power in virtual communities. The rule of law provides a constitutional discourse that assists in considering appropriate limits on the exercise of private power. I argue that the private contractual framework that is used to govern relations in virtual communities ought to be informed by the values of the rule of law in order to more appropriately address the governance tensions that permeate these spaces. These values suggest three main limits to the exercise of private power: that governance is limited by community rules and that the scope of autonomy is limited by the substantive values of the territorial state; that private contractual rules should be general, equal, and certain; and that, most importantly, internal norms be predicated upon the consent of participants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

System analysis within the traction power system is vital to the design and operation of an electrified railway. Loads in traction power systems are often characterised by their mobility, wide range of power variations, regeneration and service dependence. In addition, the feeding systems may take different forms in AC electrified railways. Comprehensive system studies are usually carried out by computer simulation. A number of traction power simulators have been available and they allow calculation of electrical interaction among trains and deterministic solutions of the power network. In the paper, a different approach is presented to enable load-flow analysis on various feeding systems and service demands in AC railways by adopting probabilistic techniques. It is intended to provide a different viewpoint to the load condition. Simulation results are given to verify the probabilistic-load-flow models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traffic conflicts at railway junctions are very conmon, particularly on congested rail lines. While safe passage through the junction is well maintained by the signalling and interlocking systems, minimising the delays imposed on the trains by assigning the right-of-way sequence sensibly is a bonus to the quality of service. A deterministic method has been adopted to resolve the conflict, with the objective of minimising the total weighted delay. However, the computational demand remains significant. The applications of different heuristic methods to tackle this problem are reviewed and explored, elaborating their feasibility in various aspects and comparing their relative merits for further studies. As most heuristic methods do not guarantee a global optimum, this study focuses on the trade-off between computation time and optimality of the resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of study: Traffic conflicts occur when trains on different routes approach a converging junction in a railway network at the same time. To prevent collisions, a right-of-way assignment is needed to control the order in which the trains should pass the junction. Such control action inevitably requires the braking and/or stopping of trains, which lengthens their travelling times and leads to delays. Train delays cause a loss of punctuality and hence directly affect the quality of service. It is therefore important to minimise the delays by devising a suitable right-of-way assignment. One of the major difficulties in attaining the optimal right-of-way assignment is that the number of feasible assignments increases dramatically with the number of trains. Connected-junctions further complicate the problem. Exhaustive search for the optimal solution is time-consuming and infeasible for area control (multi-junction). Even with the more intelligent deterministic optimisation method revealed in [1], the computation demand is still considerable, which hinders real-time control. In practice, as suggested in [2], the optimality may be traded off by shorter computation time, and heuristic searches provide alternatives for this optimisation problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus Aureus (MRSA) is a pathogen that continues to be of major concern in hospitals. We develop models and computational schemes based on observed weekly incidence data to estimate MRSA transmission parameters. We extend the deterministic model of McBryde, Pettitt, and McElwain (2007, Journal of Theoretical Biology 245, 470–481) involving an underlying population of MRSA colonized patients and health-care workers that describes, among other processes, transmission between uncolonized patients and colonized health-care workers and vice versa. We develop new bivariate and trivariate Markov models to include incidence so that estimated transmission rates can be based directly on new colonizations rather than indirectly on prevalence. Imperfect sensitivity of pathogen detection is modeled using a hidden Markov process. The advantages of our approach include (i) a discrete valued assumption for the number of colonized health-care workers, (ii) two transmission parameters can be incorporated into the likelihood, (iii) the likelihood depends on the number of new cases to improve precision of inference, (iv) individual patient records are not required, and (v) the possibility of imperfect detection of colonization is incorporated. We compare our approach with that used by McBryde et al. (2007) based on an approximation that eliminates the health-care workers from the model, uses Markov chain Monte Carlo and individual patient data. We apply these models to MRSA colonization data collected in a small intensive care unit at the Princess Alexandra Hospital, Brisbane, Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software transactional memory has the potential to greatly simplify development of concurrent software, by supporting safe composition of concurrent shared-state abstractions. However, STM semantics are defined in terms of low-level reads and writes on individual memory locations, so implementations are unable to take advantage of the properties of user-defined abstractions. Consequently, the performance of transactions over some structures can be disappointing. ----- ----- We present Modular Transactional Memory, our framework which allows programmers to extend STM with concurrency control algorithms tailored to the data structures they use in concurrent programs. We describe our implementation in Concurrent Haskell, and two example structures: a finite map which allows concurrent transactions to operate on disjoint sets of keys, and a non-deterministic channel which supports concurrent sources and sinks. ----- ----- Our approach is based on previous work by others on boosted and open-nested transactions, with one significant development: transactions are given types which denote the concurrency control algorithms they employ. Typed transactions offer a higher level of assurance for programmers reusing transactional code, and allow more flexible abstract concurrency control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the late 1990s, there has been great enthusiasm expressed about the positive impact that can be obtained for poor and disadvantaged people from information and communication technologies (ICTs). This school of thought among researchers and practitioners is identified as ICTs for development (ICT4D). By contrast, a growing number of researchers eschew the technologically deterministic nature of the claims being made for development progress and seek to understand the role of technology in people’s lives, primarily through ethnographic studies. This book, which focuses on mobile telephony on the African continent, fits into the latter body of literature, with several authors explicitly stating they are examining social and cultural settings and are not taking a technologically deterministic view. The book captures the diverse ways various communities are using this communication technology. It adds to the burgeoning field of mobile phone studies, in which an increasing number of studies is emerging from developing countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.