508 resultados para deregulation
Resumo:
Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.
Resumo:
Proteins of the Hha/YmoA family co-regulate with H-NS the expression of horizontally acquired genes in Enterobacteria. Systematic mutations of conserved acidic residues in Hha have allowed the identification of D48 as an essential residue for H-NS binding and the involvement of E25. Mutations of these residues resulted in deregulation of sensitive genes in vivo. D48 is only partially solvent accessible, yet it defines the functional binding interface between Hha and H-NS confirming that Hha has to undergo a conformational change to bind H-NS. Exposed acidic residues, such as E25, may electrostatically facilitate and direct the approach of Hha to the positively charged region of H-NS enabling the formation of the final complex when D48 becomes accessible by a conformational change of Hha.
Resumo:
Fabry disease is a lysosomal storage disorder (LSD) caused by a deficiency in alpha-galactosidase A. The disease is characterized by severe major organ involvement, but the pathologic mechanisms responsible have not been elucidated. Disruptions of autophagic processes have been reported for other LSDs, but have not yet been investigated in Fabry disease. Renal biopsies were obtained from five adult male Fabry disease patients before and after three years of enzyme replacement therapy (ERT) with agalsidase alfa. Vacuole accumulation was seen in renal biopsies from all patients compared with control biopsies. Decreases in the number of vacuoles were seen after three years of ERT primarily in renal endothelial cells and mesangial cells. Measurement of the levels of LC3, a specific autophagy marker, in cultured cells from Fabry patients revealed increased basal levels compared to cells from non-Fabry subjects and a larger increase in response to starvation than seen in non-Fabry cells. Starvation in the presence of protease inhibitors did not result in a significant increase in LC3 in Fabry cells, whereas a further increase in LC3 was observed in non-Fabry cells, an observation that is consistent with impaired autophagic flux in Fabry disease. Overexpression of LC3 mRNA in Fabry fibroblasts compared to control cells is consistent with an upregulation of autophagy. Furthermore, LC3 and p62/SQSTM1 (that binds to LC3) staining in renal tissues and in cultured fibroblasts from Fabry patients supports impairment of autophagic flux. These findings suggest that Fabry disease is linked to a deregulation of autophagy.
Resumo:
Les anomenades malalties neurodegeneratives tenen una simptomatologia i unes manifestacions clíniques molt diferents entre elles. No obstant, totes elles convergeixen en el mateix procés final, la neurodegeneració, que es manifestarà en diferents localitzacions o tipus cel·lulars del sistema nerviós. Nosaltres, plantegem la hipòtesi de que els processos moleculars i cel·lulars subjacents a la neurodegeneració són comuns per totes elles. Després de dur a terme un procés de selecció, es decideix treballar amb la malaltia de Parkinson, la d’Alzheimer, l’Esclerosi lateral amiotròfica i l’esclerosi múltiple. Hem pogut determinar que hi ha set processos moleculars o cel·lulars que estan associats al procés de neurodegeneració i que són comuns a totes elles. Havent-les estudiat per separat s’observa que el procés de neurodegeneració consisteix en una fallada en cadena de diferents sistemes moleculars i cel·lulars que tenen com a punt d’origen l’estrès oxidatiu. A aquest estrès s’hi pot arribar de diferents maneres. Una d’elles és l’exposició excessiva a certs metalls, que provoca la pèrdua dels sistemes antioxidants cel·lulars. Degut a això, els mitocondris reben un impacte oxidatiu massa gran i comencen a fallar. El fet que aquest orgànul actuï com a tampó del calci intracel·lular en provoca la seva desregulació, alterant d’aquesta manera el senyal nerviós. En resposta a l’estrès oxidatiu i tèrmic que genera la disfunció mitocondrial, s’activen les Proteïnes de Xoc Tèrmic (HSP) que actuant de citocines i presentadores d’antígens, inicien la resposta immunològica contra les cèl·lules danyades. Paral·lelament, s’observa un increment de la permeabilitat de la barrera hematoencefàlica degut a la pèrdua de les adhesions cel·lulars estretes per l’alta presència d’espècies reactives. Com a conseqüència de l’afebliment o el trencament de la barrera hematoencefàlica, es pot produir una entrada al SNC de diferents substàncies neurotòxiques i de cèl·lules del sistema immunitàri que, en condicions normals tenen l’accés restringit. Juntament amb aquestes cèl·lules immunològiques, també s’activen les cèl·lules del sistema immunitari innat residents al cervell, la micròglia, i totes elles secreten citocines proinflamatòries que contribueixen al procés de neurodegeneració. Nosaltres presentem els mecanismes pels quals aquesta inflamació, lluny d’atenuar-se, es cronifica per l’acció de certs bucles de retroalimentació positiva. Les diferents peculiaritats de cada malaltia contribueixen en aquest procés de diferents maneres, com és el cas dels pèptids β-amilides en la malaltia d’Alzheimer, l’α-sinucleina en el Parkinson, la superòxid dismutasa (SOD) en l’esclerosi lateral amiotròfica, o l’infiltració de leucòcits al cervell degut a la resposta autoimmune de l’esclerosi múltiple.Deixant de banda aquestes diferències, si el procés és comú entre totes elles, l’estudi a fons d’aquest procés hauria de poder permetre identificar dianes tarapèutiques que siguin comunes per les quatre malalties.
Resumo:
Résumé La dérégulation de c-Myc est un événement fréquent de la transformation cellulaire. Une régulation positive de cette oncoprotéine a été démontrée dans divers mélanomes cutanés primaires et métastatiques et est associée à un pronostic défavorable (Grover et al., 1996; Zhuang et al., 2008). c-Myc est considéré comme une molécule centrale impliquée dans plusieurs processus de l'homéostasie cellulaire. En raison de sa contribution importante dans la progression tumorale, la fonction de c-Myc a été étudiée intensément. Cependant nous connaissons peu le rôle de ce facteur de transcription dans l'embryogenèse et dans la spécification tissulaire. Un déficit total de c-Myc pendant l'embryogenèse conduit à la mort embryonnaire avant 10.5 jours de gestation. Cette mort est causée par de multiples imperfections du développement touchant la taille de l'embryon, le coeur, le péricarde, le tube neural et les cellules sanguines (Davis et al., 1993; Trumpp et al., 2001). Récemment, il a été montré que la plupart de ces anomalies sont secondaires et résultent d'une insuffisance du placenta dans les embryons c-myc-/- (Dubois et al., 2008). Sachant que c-Myc est important dans la maintenance des lignées de la crête neurale (Wei et al., 2007), nous nous sommes intéressés au rôle de c-Myc dans le développement des cellules pigmentaires et à leur homéostasie après la naissance. Un allèle floxé de c-myc (Trumpp et al., 2001) a été utilisé pour supprimer ce gène spécifiquement dans la lignée mélanocytaire à l'aide d'une souris transgénique Tyr::Cre (Delmas et al., 2003). L'ablation des deux allèles de c-myc dans les mélanocytes des souris c-myccKO conduit au phénotype de grisonnement des poils, observé directement après la naissance et associé à une diminution du nombre de mélanocytes dans le bulbe des follicules pileux. Les cellules pigmentaires restantes expriment les marqueurs mélanogéniques (Tyr, TRP-1, Dct and MITF) et semblent être fonctionnelles puisqu'elles peuvent produire et transférer la mélanine. De plus, la capacité de prolifération des mélanocytes déficients en c-Myc dans le bulbe des follicules pileux ne semble pas être affectée chez les nouveaux-nés. Les cellules souches mélanocytaires sont présentes, mais en nombre réduit, dans le bulge des follicules pileux à la fin de la morphogenèse chez les souris c-myccKO âgées de huit jours. Ces cellules sont maintenues sans changement durant le premier cycle pileux (vérifié à l'âge de trente jours), ce qui sous-entend que la fonction de c-Myc n'est pas nécessaire pour ce processus. Ceci explique pourquoi, en supposant que des cellules souches mélanocytaires fonctionnelles sont présentes dans la peau, nous n'observons pas de dilution de couleur de la robe liée à l'âge. Cependant, la présence de ces cellules souches mélanocytaires dans la peau c-myccKO ne suffit pas à assurer une quantité normale de mélanocytes différenciés dans le bulbe des follicules pileux. Cette population de cellules pigmentaires matures est sévèrement affectée par la suppression de c-Myc, ce qui contribue amplement au phénotype de grisonnement des poils. De plus, c-Myc paraît être important pour le développement des mélanocytes. Ainsi, le nombre de mélanoblastes diminue dans les embryons c-myccKO à partir du douzième jour de gestation. A treize jours de gestation, au stade où les mélanoblastes pénètrent dans l'épiderme et prolifèrent, les mélanoblastes déficients en c-Myc ne s'adaptent pas aux signaux de prolifération et se retrouvent en nombre réduit dans l'épiderme. Finalement, nous nous sommes intéressés, au rôle de N-Myc, un homologue proche de c-Myc, dans la lignée mélanocytaire. Nos expériences ont montré que. N-Myc était superflu pour le développement et l'homéostasie des mélanocytes, une seule copie du gène c-myc étant suffisante pour maintenir une pigmentation normale de la robe des souris c-mycc-myccKO/+~N_ myccKO/KO. Cependant, le rôle essentiel de N-Myc dans la maintenance des cellules mélanocytaires précurseurs apparaît lorsque c-Myc est absent, puisque la suppression simultanée des deux Myc résulte en une perte complète de la coloration de la robe. Ceci implique la présence d'un mécanisme compensatoire entre c- et N-Myc dans la lignée mélanocytaire, avec un rôle prédominant de c-Myc. Summary Deregulation of c-Myc is known to be a common event in cellular transformation. Upregulation of this oncoprotein was shown in a variety of primary and metastatic cutaneous melanomas and has been associated with a poor prognosis (Grover et al., 1996; Zhuang et al., 2008). c-myc is seen as a central molecule involved in many aspects of cellular homeostasis. c-Myc function has been intensively studied mostly because of its significant contribution to tumour progression. However little is known on the role of this transcription factor in embryogenesis and tissue specification. Complete loss of c-Myc during embryogenesis results in embryonic death before E10.5 due to multiple developmental defects including embryonic size, heart, pericardium, neural tube and blood cells (Davis et al., 1993; Trumpp et al., 2001). Recently it was discovered that most of these abnormalities are secondary and results of placental insufficiency in c-Myc-/- embryos (Dubois et al., 2008). Here, we focused on the role of c-Myc in pigment cell development and homeostasis after birth, knowing that c-Myc is important in the maintenance of neural crest lineages (Wei et al., 2007). A floxed allele of c-Myc (Trumpp et al., 2001) was used to specifically delete this gene in the melanocyte lineage using Tyr::Cre transgenic mice (Delmas et al., 2003). Removal of both c-Myc alleles in melanocytes of c-MyccKO mouse led to the grey hair phenotype which is seen directly after birth and was associated with a decrease in the melanocyte number in the bulb of the hair follicle. The remaining population of pigment cells express melanogenic markers (Tyr, TRP-1, Dct and MITF) and seem functionally normal since they can produce and transfer melanin. Furthermore proliferation capacity of c-Myc deficient melanocytes in the bulb of hair follicle seems not to be affected in newborn animals. Melanocyte stem cells (MSCs) are present but reduced in numbers in the bulge of the hair follicle at the end of morphogenesis in 8 days old c-MyccKO mice. These cells are maintained through the first hair cycle (as verified at P30) without any further changes, suggesting that c-Myc function is not required for this process. This explains why we did not detect any agerelated coat color dilution, assuming a presence of functional MSCs in the skin. Importantly, presence of MSCs in c-MyccKO skin was not sufficient for assuring a normal number of differentiated melanocytes in the bulb of the hair follicle. This population of mature pigmented cells is severely affected upon c-myc deletion thus largely contributing to the grey hair phenotype. Moreover, c-Myc appears to be important for melanocyte development. Thus, melanoblast number is affected in c-MyccKO embryos day 12 of gestation onwards. At E13.5, when melanoblasts enter the epidermis and proliferate, c-myc deficient melanoblasts failed to adapt to proliferation signals and are therefore reduced in number in the epidermis. Finally, we addressed the role of N-Myc, a closest homologue of c-Myc, in the melanocyte lineage. In these experiments, N-Myc was dispensable for melanocyte development and homeostasis, and even one copy of the c-myc gene was sufficient to maintain normal coat color pigmentation in c-mycc-mycCKO/+ ,N-myccKO/KO mice. However the crucial role of N-Myc in maintenance of melanocyte precursor cells became apparent when c-myc is eliminated since simultaneous deletion of both Myc results in complete loss of coat color pigmentation. This suggests compensatory mechanisms between c- and N-Myc with a predominant role of c-Myc in melanocyte lineage.
Resumo:
Background: Glutathione (GSH) is a major redox regulator and antioxidant and is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients [Do et al. (2000) Eur J Neurosci 12:3721]. The genes of the key GSH-synthesizing enzyme, glutamate- cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, are associated with schizophrenia, suggesting that the deficit in GSH synthesis is of genetic origin [Gysin et al. (2007) PNAS 104:16621]. GCLM knock-out (KO) mice, which display an 80% decrease in brain GSH levels, have abnormal brain morphology and function [Do et al. (2009) Curr Opin Neurobiol 19:220]. Developmental redox deregulation by impaired GSH synthesis and environmental risk factors generating oxidative stress may have a central role in schizophrenia. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. Methods: The neurochemical profile of the anterior and posterior cortical areas of male and female GCLM KO and wild-type mice was determined by in vivo 1H NMR spectroscopy on postnatal days 10, 20, 30, 60 and 90, under 1 to 1.5% isoflurane anaesthesia. Localised 1H NMR spectroscopy was performed on a 14.1 T, 26 cm VNMRS spectrometer (Varian, Magnex) using a home-built 8 mm diameter quadrature surface coil (used both for RF excitation and signal reception). Spectra were acquired using SPECIAL with TE of 2.8 ms and TR of 4 s from VOIs placed in anterior or posterior regions of the cortex [Mlynárik et al. (2006) MRM 56:965]. LCModel analysis allowed in vivo quantification of a neurochemical profile composed of 18 metabolites. Results: GCLM KO mice displayed nearly undetectable GSH levels as compared to WT mice, demonstrating their drastic redox deregulation. Depletion of GSH triggered alteration of metabolites related to its synthesis, namely increase of glycine and glutamate levels during development (P20 and P30). Concentrations of glutamine and aspartate that are produced from glutamate were also increased in GCLM KO animals relative to WT. In addition, GCLM KO mice also showed higher levels of N-acetylaspartate that originates from the acetylation of aspartate. These metabolites are particularly implicated in neurotransmission processes and in mitochondrial oxidative metabolism. Their increase may indicate impaired mitochondrial metabolism with concomitant accumulation of lactate in the adult mice (P60 and P90). In addition, the GSH depletion triggers reduction of GABA concentration in anterior cortex of the P60 mice, which is in accordance with known impairment of GABAergic interneurons in that area. Changes were generally more pronounced in males than in females at P60, which is consistent with earlier disease onset in male patients. Discussion: In conclusion, the observed metabolic alterations in the cortex of a mouse model of redox deregulation suggest impaired mitochondrial metabolism and altered neurotransmission. The results also highlight the age between P20 and P30 as a sensitive period during the development for these alterations.
Resumo:
mTORC1 is a central regulator of growth in response to nutrient availability, but few direct targets have been identified. RNA polymerase (pol) III produces a number of essential RNA molecules involved in protein synthesis, RNA maturation, and other processes. Its activity is highly regulated, and deregulation can lead to cell transformation. The human phosphoprotein MAF1 becomes dephosphorylated and represses pol III transcription after various stresses, but neither the significance of the phosphorylations nor the kinase involved is known. We find that human MAF1 is absolutely required for pol III repression in response to serum starvation or TORC1 inhibition by rapamycin or Torin1. The protein is phosphorylated mainly on residues S60, S68, and S75, and this inhibits its pol III repression function. The responsible kinase is mTORC1, which phosphorylates MAF1 directly. Our results describe molecular mechanisms by which mTORC1 controls human MAF1, a key repressor of RNA polymerase III transcription, and add a new branch to the signal transduction cascade immediately downstream of TORC1.
Resumo:
The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)(+) germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1-PD-L1 interaction in regulating TFH cell function. In fact, we show that engagement of PD-1 on TFH cells leads to a reduction in cell proliferation, activation, inducible T-cell co-stimulator (ICOS) expression and interleukin-21 (IL-21) cytokine secretion. Blocking PD-1 signaling enhances HIV-specific immunoglobulin production in vitro. We further show that at least part of this defect involves IL-21, as addition of this cytokine rescues antibody responses and plasma cell generation in vitro. Our results suggest that deregulation of TFH cell-mediated B cell help diminishes B cell responses during HIV infection and may be related to PD-1 triggering on TFH cells. These results demonstrate a role for TFH cell impairment in HIV pathogenesis and suggest that enhancing their function could have a major impact on the outcome and control of HIV infection, preventing future infections and improving immune responses to vaccinations.
Resumo:
Lamellarins are a large family of marine alkaloids with potential anticancer activity that have been isolated from diverse marine organisms, mainly ascidians and sponges. All lamellarins feature a 3,4-diarylpyrrole system. Pentacyclic lamellarins, whose polyheterocyclic system has a pyrrole core, are the most active compounds. Some of these alkaloids are potently cytotoxic to various tumor cell lines. To date, Lam-D and Lam-H have been identified as lead compounds for the inhibition of topoisomerase I and HIV-1 integrase, respectively nuclear enzymes which are over-expressed in deregulation disorders. Moreover,these compounds have been reported for their efficacy in treatment of multi-drug resistant (MDR) tumors cells without mediated drug efflux, as well as their immunomodulatory activity and selectivity towards melanoma cell lines. This article is an overview of recent literature on lamellarins, encompassing their isolation, recent synthetic strategies for their total synthesis, the preparation of their analogs, studies on their mechanisms of action, and their structure-activity relationships (SAR).
Resumo:
Abstract Ovarian hormones are key regulators of postnatal mammary gland development and are linked to breast carcinogenesis. In particular, estrogens induce mammary epithelial cells to proliferate at the onset of puberty, leading to the elongation of the rudimental ductal tree into the fatty stromal tissue. Elucidating the molecular events underlying estrogen mitogenic activity in the mammary gland is of value in understanding how the deregulation of this signalling pathway can lead to breast tumorigenesis. Our lab has recently shown that estrogen induces mammary proliferation via epithelial estrogen receptor alpha (ERα) by a paracrine mechanism. Based on the finding that several EGF receptor (EGFR) ligands are able to substitute for estrogens and that amphiregulin (Areg), one of these ligands, is required during mammary development, we have hypothesized that Areg is a key mediator of estrogen induced paracrine signalling during ductal morphogenesis. Our analysis of the Areg -/- mice mammary phenotype reveals that epithelial Areg is required at the onset of puberty for epithelial proliferation, terminal end bud (TEB) formation and, subsequently, ductal elongation. Hormonal stimulation experiments show that among the EGFR ligands, only Arég is specifically controlled by estrogen at the transcriptional level, via ERα, in the mammary gland. Moreover, Areg is required for the estrogen-induced mammotrophic effects of epithelial proliferation and ductal elongation. We have shown that ectopic Areg expression in ERα -/- mammary epithelial cells is sufficient to induce ductal morphogenesis. Our transplantations experiment show that when Areg -/- cells are in the presence of wt cells they contribute to all aspects of ductal development, suggesting that this growth factor acts in a paracrine fashion. Moreover, this result shows that Areg -/- epithelial cells are not intrinsically impaired in proliferation. Our transplantation experiment carried out under physiological conditions confirmed previous reports showing that stromal EGFR is needed for ductal morphogenesis. This suggests that estrogen-driven Areg signalling involves an epithelium-stroma crosstalk. Thus, these data confirmed our hypothesis of Areg being an important estrogen mediator during ductal morphogenesis. Résumé Les hormones ovariennes, régulatrices clés du développement post-natal de la glande mammaire, sont également liées à la carcinogénèse du sein. En particulier, l'oestrogène induit la division des cellules épithéliales au début de la puberté. Cette prolifération amène à l'élongation du réseau canalaire rudimentaire et permet l'invasion du compartiment stromal. L'élucidation des mécanismes moléculaires responsables de l'activité mitogénique de l'oestrogène dans la glande mammaire est précieuse pour une meilleure compréhension du développement du cancer du sein. Notre laboratoire a récemment démontré que l'cestrogène induit la prolifération des cellules épithéliales par un signal paracrine, grâce au récepteur à l'oestrogène alpha (ERα). En se basant sur le fait que plusieurs ligands du récepteur à l'EGF (EGFR) sont capables de se substituer à l'cestrogène et d'induire la prolifération épithéliale et qu'amphiregulin (Areg), un de ces ligands, est essentielle au développement de la glande mammaire, nous avons émi l'hypothèse que Areg est un médiateur essentiel du signal paracrine induit par l'oestrogène pendant la croissance du système canalaire. Nos analyses phénotypiques des glandes mammaires issues de souris transgéniques Areg -/- démontrent que cette protéine est indispensable à la prolifération des cellules épithéliales mammaires au début de la puberté et à la formation des bourgeons terminaux qui conduisent à l'élongation des canaux. Nos expériences de stimulations hormonales démontrent que, parmi l'ensemble des ligands du EGFR, seule Areg est contrôlée au niveau transcriptionnel par l'cestrogène dans la glande mammaire, ceci via le récepteur ERα. De plus, Areg est essentielle pour le effets mammotrophique induit par l'cestrogène, à savoir la prolifération épithéliál et la croissance du système canalaire. Par ailleurs, l'expression ectopique d'Areg dans des cellules epithéliales mammaires de souris transgéniques ERα -/- est suffisante pour permettre la formation du réseau canalaire. En présence de cellules normales, les cellules dépourvues du gène d'Areg contribuent à la formation des canaux. Cette expérience suggère que ce facteur de croissance agit de manière paracrine. De plus, ce résultat montre que les cellules épithéliales Areg -/- conservent leur potentiel prolifératif. Nos expériences de transplantation, réalisées dans des conditions physiologiques, ont confirmé des précédentes études qui montraient que le récepteur stromal à l'EGF est nécessaire pour la morphogénèse du système canalaire. Ceci suggère que la voie de signalisation activée par l'oestrogène et dépendante d' implique une communication entre l'épithélium et le stroma. Ainsi, ces résultats valident notre hypothèse puisqu'ils confirment Areg en tant que médiateur majeur de l'oestrogène dans la morphogénèse du système canalaire.
Resumo:
Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
Resumo:
1. Abstract Cervical cancer is thought to be the consequence of infection by human papillomaviruses (HPV). In the majority of cases, DNA from HPV type 16 (HPV16) is found in malignant cervical lesions. The initial steps leading to transformation of an infected cell are not clearly understood but in most cases, disruption and integration of the episomal viral DNA must take place. As a consequence, the E2 and E4 genes are usually not expressed whereas the E6 and E7 oncogenes are highly expressed. However, in a normal infection in which the viral DNA is maintained as an episome, all viral genes are expressed. The pattern according to which the viral proteins are made, and therefore the life cycle of the virus, is tightly linked to the differentiation process of the host keratinocyte. The study of the viral oncogenes E6 and E7 has revealed crucial functions in the process of malignant transformation such as degradation of the p53 tumor suppressor protein, deregulation of the Retinoblastoma protein pathway and activation of the telomerase ribonucleoprotein. All these steps are necessary for cancerous lesions to develop. However, the loss of the E2 gene product seems to be necessary for sufficient expression of E6 and E7 in order to achieve such effects. In normal infections, the E4 protein is made abundantly in the later stages of the viral life cycle. Though extensive amounts of work have been carried out to define the function of E4, it still remains unclear. In this study, several approaches have been used to try and determine the functions of E4. First, a cell-penetrating fusion protein was designed and produced in order to circumvent the chronic difficulties of expressing E4 in mammalian cells. Unfortunately, this approach was not successful due to precipitation of the purified fusion protein. Second, the observation that E4 accumulates in cells having modified their adhesion properties led to the hypothesis that E4 might be involved in the differentiation process of keratinocytes. Preliminary results suggest that E4 triggers differentiation. Last, as E4 has been reported to collapse the cytokeratin network of keratinocytes, a direct approach using atomic force microscopy has allowed us to test the potential modification of mechanical properties of cells harboring reorganized cytokeratin networks. If so, a potential role for E4 in viral particle release could be hypothesized. 2. Résumé Il a été établi que le cancer du col de l'utérus se développe essentiellement à la suite d'une infection par le virus du papillome humain (HPV). Dans la majorité des cas analysés, de l'ADN du HPV de type 16 (HPV16) est détecté. Les étapes initiales de la transformation d'une cellule infectée sont mal connues mais il semble qu'une rupture du génome viral, normalement épisomal, suivi d'une intégration dans le génome de la cellule hôte soient des étapes nécessaires dans la plupart des cas. Or il semble qu'il y ait une sélection pour les cas où l'expression des oncogènes viraux E6 et E7 soit favorisée alors que l'expression des gènes E2 et E4 est en général impossible. Par contre, dans une infection dite normale où le génome viral n'est pas rompu, il n'y pas développement de cancer et tous les gènes viraux sont exprimés. L'ordre dans lequel les protéines virales sont produites, et donc le cycle de réplication du virus, est intimement lié au processus de différentiation de la cellule hôte. L'étude des protéines oncogènes E6 et E7 a révélé des fonctions clés dans le processus de transformation des cellules infectées telles que la dégradation du suppresseur de tumeur p53, la dérégulation de la voie de signalisation Rb ainsi que l'activation de la télomérase. Toutes ces activités sont nécessaires au développement de lésions cancéreuses. Toutefois, il semble que l'expression du gène E2 doit être empêchée afin que suffisamment des protéines E6 et E7 soient produites. Lorsque le gène E2 est exprimé, et donc lorsque le génome viral n'est pas rompu, les protéines E6 et E7 n'entraînent pas de telles conséquences. Le gène E4, qui se trouve dans la séquence codante de E2, a aussi besoin d'un génome viral intact pour être exprimé. Dans une infection normale, le gène E4 est exprimé abondamment dans les dernières étapes de la réplication du virus. Bien que de nombreuses études aient été menées afin de déterminer la fonction virale à E4, aucun résultat n'apparaît évident. Dans ce travail, plusieurs approches ont été utilisées afin d'adresser cette question. Premièrement, une protéine de fusion TAT-E4 a été produite et purifiée. Cette protéine, pouvant entrer dans les cellules vivantes par diffusion au travers de la membrane plasmique, aurait permis d'éviter ainsi les problèmes chroniques rencontrés lors de l'expression de E4 dans les cellules mammifères. Malheureusement, cette stratégie n'a pas pu être utilisée à cause de la précipitation de la protéine purifiée. Ensuite, l'observation que E4 s'accumule dans les cellules ayant modifié leurs propriétés d'adhésion a suggéré que E4 pourrait être impliqué dans le procédé de différentiation des kératinocytes. Des résultats préliminaires supportent cette possibilité. Enfin, il a été montré que E4 pouvait induire une réorganisation du réseau des cytokératines. Une approche directe utilisant le microscope à force atomique nous a ainsi permis de tester une potentielle modification des propriétés mécaniques de cellules ayant modifié leur réseau de cytokératines en présence de E4. Si tel est le cas, un rôle dans la libération de particules virales peut être proposé pour E4.
Resumo:
RESUME La télomérase confère une durée de vie illimitée et est réactivée dans la plupart des cellules tumorales. Sa sous-unité catalytique hTERT est définie comme le facteur limitant pour son activation. De l'identification de facteurs liant la région régulatrice d'hTERT, au rôle de la méthylation de l'ADN et de la modification des histones, de nombreux modèles de régulation ont été suggérés. Cependant, aucun de ces modèles n'a pu expliquer l'inactivation de la télomérase dans la plupart des cellules somatiques et sa réactivation dans la majorité des cellules tumorales. De plus, les observations contradictoires entre le faible niveau d'expression d'ARN messager d'hTERT dans les cellules télomérase-positives et la très forte activité transcriptionnelle du promoteur d'hTERT en transfection restent incomprises. Dans cette étude, nous avons montré que la région proximale du gène hTERT (exon 1 et 2) était impliquée dans la répression de l'activité de son promoteur. Nous avons identifié le facteur CTCF comme étant un inhibiteur du promoteur d'hTERT, en se liant au niveau de son premier exon. La méthylation de l'exon 1 du gène hTERT, couramment observée dans les tumeurs mais pas dans les cellules normales, empêcherait la liaison de CTCF. L'étude du profil de méthylation du promoteur d'hTERT indique qu'une partie du promoteur reste déméthylée et qu'elle semble suffisante pour permettre une faible activité transcriptionnelle du gène hTERT. Ainsi, la méthylation particulière des régions régulatrices d'hTERT inhibe la liaison de CTCF tout en permettant une faible transcription du gène. Cependant, dans certaines cellules tumorales, le promoteur et la région proximale du gène hTERT ne sont pas méthylés. Dans les lignées cellulaires tumorales de tesitcules et d'ovaires, l'inhibition de CTCF est contrée par son paralogue BORIS, qui se lie aussi au niveau de l'exon 1 d'hTERT, mais permet ainsi l'activation du promoteur. L'étude de l'expression du gène BORIS montre qu'il est exclusivement exprimé dans les tissus normaux de testicules et d'ovaires jeunes, ainsi qu'à différents niveaux dans la plupart des tumeurs. Sa transcription est sous le contrôle de deux promoteurs. Le promoteur proximal est régulé par méthylation et un transcrit alternatif majoritaire, délété de l'exon 6, est trouvé lorsque ce promoteur est actif. Tous ces résultats conduisent à un modèle de régulation du gène hTERT qui tient compte du profil épigénétique du gène et qui permet d'expliquer le faible taux de transcription observé in vivo. De plus, l'expression de BORIS dans les cancers et son implication dans l'activation du gène hTERT pourrait permettre de comprendre les phénomènes de dérégulation épigénétique et d'immortalisation qui ont lieu durant la tumorigenèse. SUMMARY Telomerase confers an unlimited lifespan, and is reactivated in most tumor cells. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors that bind to the hTERT 5' regulatory region, and the role of CpG methylation and histone acetylation, an abundance of regulatory models have been suggested. None of these models can explain the silence of telomerase in most somatic cells and its reactivation in tumor cells. Moreover, the contradictory observations of the low level of hTERT mRNA in telomerase-positive cells and the high transcriptional activity of the hTERT promoter in transfection experiments remain unresolved. In this study, we demonstrated that the proximal exonic region of the hTERT gene (exon 1 and 2) is involved in the inhibition of its promoter. We identified the protein CTCF as the inhibitor of the hTERT promoter, through its binding to the first exon. The methylation of the first exon region, which is often observed in cancer cells but not in noimal cells, represses CTCF binding. Study of hTERT promoter methylation shows a partial demethylation sufficient to activate the transcription of the hTERT gene. Therefore, we demonstrated that the particular methylation profile of the hTERT regulatory sequences inhibits the binding of CTCF, while it allows a low transcription of the gene. Nevertheless, in some tumor cells, the promoter and the proximal exonic region of hTERT are unmethylated. In testicular and ovarian cancer cell lines, CTCF inhibition is counteracted by its BORIS paralogue that also binds the hTERT first exon but allows the promoter activation. The study of BORIS gene regulation showed that this factor is exclusively expressed in normal tissue of testis and ovary of young woman, as well as in almost all tumors with different levels. Two promoters were found to induce its transcription. The proximal promoter was regulated by methylation. Moreover, a major alternative transcript, deleted of the exon 6, is detected when this promoter is active. All these results lead to a model for hTERT regulation that takes into account the epigenetic profile of the gene and provides an explanation for the low transcriptional level observed in vivo. BORIS expression in cancers and its implication in hTERT activation might also permit the understanding of epigenetic deregulation and immortalization phenomena that occur during tumorigenesis.
Resumo:
Grx3 and Grx4, two monothiol glutaredoxins of Saccharomyces cerevisiae, regulate Aft1 nuclear localisation. We provide evidence of a negative regulation of Aft1 activity by Grx3 and Grx4. The Grx domain of both proteins played an important role in Aft1 translocation to the cytoplasm. This function was not, however, dependent on the availability of iron. Here we demonstrate that Grx3, Grx4 and Aft1 interact each other both in vivo and in vitro, which suggests the existence of a functional protein complex. Interestingly, each interaction occurred independently on the third member of the complex. The absence of both Grx3 and Grx4 induced a clear enrichment of G1 cells in asynchronous cultures, a slow growth phenotype, the accumulation of intracellular iron and a constitutive activation of the genes regulated by Aft1. The grx3grx4 double mutant was highly sensitive to the oxidising agents hydrogen peroxide and t-butylhydroperoxide but not to diamide. The phenotypes of the double mutant grx3grx4 characterised in this study were mainly mediated by the Aft1 function, suggesting that grx3grx4 could be a suitable cellular model for studying endogenous oxidative stress induced by deregulation of the iron homeostasis. However, our results also suggest that Grx3 and Grx4 might play additional roles in the oxidative stress response through proteins other than Aft1.
Resumo:
T cells play a critical role in tumor immune surveillance as evidenced by extensive mouse-tumor model studies as well as encouraging patient responses to adoptive T cell therapies and dendritic cell vaccines. It is well established that the interplay of tumor cells with their local cellular environment can trigger events that are immunoinhibitory to T cells. More recently it is emerging that the tumor vasculature itself constitutes an important barrier to T cells. Endothelial cells lining the vessels can suppress T cell activity, target them for destruction, and block them from gaining entry into the tumor in the first place through the deregulation of adhesion molecules. Here we review approaches to break this tumor endothelial barrier and enhance T cell activity.