673 resultados para deformation microstructure
Resumo:
The aim of this study is to gain a better understanding of the structure and the deformation history of a NW-SE trending regional, crustal-scale shear structure in the Åland archipelago, SW Finland, called the Sottunga-Jurmo shear zone (SJSZ). Approaches involving e.g. structural geology, geochronology, geochemistry and metamorphic petrology were utilised in order to reconstruct the overall deformation history of the study area. The study therefore describes several features of the shear zone including structures, kinematics and lithologies within the study area, the ages of the different deformation phases (ductile to brittle) within the shear zone, as well as some geothermobarometric results. The results indicate that the SJSZ outlines a major crustal discontinuity between the extensively migmatized rocks NE of the shear zone and the unmigmatised, amphibolite facies rocks SW of the zone. The main SJSZ shows overall dextral lateral kinematics with a SW-side up vertical component and deformation partitioning into pure shear and simple shear dominated deformation styles that was intensified toward later stages of the deformation history. The deformation partitioning resulted in complex folding and refolding against the SW margin of the SJSZ, including conical and sheath folds, and in a formation of several minor strike-slip shear zones both parallel and conjugate to the main SJSZ in order to accommodate the regional transpressive stresses. Different deformation phases within the study area were dated by SIMS (zircon U-Pb), ID-TIMS (titanite U-Pb) and 40Ar/39Ar (pseudotachylyte wholerock) methods. The first deformation phase within the ca. 1.88 Ga rocks of the study area is dated at ca. 1.85 Ga, and the shear zone was reactivated twice within the ductile regime (at ca. 1.83 Ga and 1.79 Ga), during which the strain was successively increasingly partitioned into the main SJSZ and the minor shear zones. The age determinations suggest that the orogenic processes within the study area did not occur in a temporal continuum; instead, the metamorphic zircon rims and titanites show distinct, 10-20 Ma long breaks in deformation between phases of active deformation. The results of this study further imply slow cooling of the rocks through 600-700ºC so that at 1.79 Ga, 2 the temperature was still at least 600ºC. The highest recorded metamorphic pressures are 6.4-7.1 kbar. At the late stages or soon after the last ductile phase (ca. 1.79 Ga), relatively high-T mylonites and ultramylonites were formed, witnessing extreme deformation partitioning and high strain rates. After the rocks reached lower amphibolite facies to amphibolite-greenschist facies transitional conditions (ca. 500-550ºC), they cooled rapidly, probably due to crustal uplift and exhumation. The shear zone was reactivated at least once within the semi-brittle to brittle regime between ca. 1.79 Ga and 1.58 Ga, as evidenced by cataclasites and pseudotachylytes. In summary, the results of this study suggest that the Sottunga-Jurmo shear zone (and the South Finland shear zone) defines a major crustal discontinuity, and played a central role in accommodating the regional stresses during and after the Svecofennian orogeny.
Resumo:
A cortical visuomotor network, comprising the medial intraparietal sulcus (mIPS) and the dorsal premotor area (PMd), encodes the sensorimotor transformations required for the on-line control of reaching movements. How information is transmitted between these two regions and which pathways are involved, are less clear. Here, we use a multimodal approach combining repetitive transcranial magnetic stimulation (rTMS) and diffusion tensor imaging (DTI) to investigate whether structural connectivity in the 'reaching' circuit is associated to variations in the ability to control and update a movement. We induced a transient disruption of the neural processes underlying on-line motor adjustments by applying 1Hz rTMS over the mIPS. After the stimulation protocol, participants globally showed a reduction of the number of corrective trajectories during a reaching task that included unexpected visual perturbations. A voxel-based analysis revealed that participants exhibiting higher fractional anisotropy (FA) in the second branch of the superior longitudinal fasciculus (SLF II) suffered less rTMS-induced behavioral impact. These results indicate that the microstructural features of the white matter bundles within the parieto-frontal 'reaching' circuit play a prominent role when action reprogramming is interfered. Moreover, our study suggests that the structural alignment and cohesion of the white matter tracts might be used as a predictor to characterize the extent of motor impairments.
Resumo:
Mapping the microstructure properties of the local tissues in the brain is crucial to understand any pathological condition from a biological perspective. Most of the existing techniques to estimate the microstructure of the white matter assume a single axon orientation whereas numerous regions of the brain actually present a fiber-crossing configuration. The purpose of the present study is to extend a recent convex optimization framework to recover microstructure parameters in regions with multiple fibers.
Accelerated Microstructure Imaging via Convex Optimisation for regions with multiple fibres (AMICOx)
Resumo:
This paper reviews and extends our previous work to enable fast axonal diameter mapping from diffusion MRI data in the presence of multiple fibre populations within a voxel. Most of the existing mi-crostructure imaging techniques use non-linear algorithms to fit their data models and consequently, they are computationally expensive and usually slow. Moreover, most of them assume a single axon orientation while numerous regions of the brain actually present more complex configurations, e.g. fiber crossing. We present a flexible framework, based on convex optimisation, that enables fast and accurate reconstructions of the microstructure organisation, not limited to areas where the white matter is coherently oriented. We show through numerical simulations the ability of our method to correctly estimate the microstructure features (mean axon diameter and intra-cellular volume fraction) in crossing regions.
Resumo:
Landslide processes can have direct and indirect consequences affecting human lives and activities. In order to improve landslide risk management procedures, this PhD thesis aims to investigate capabilities of active LiDAR and RaDAR sensors for landslides detection and characterization at regional scales, spatial risk assessment over large areas and slope instabilities monitoring and modelling at site-specific scales. At regional scales, we first demonstrated recent boat-based mobile LiDAR capabilities to model topography of the Normand coastal cliffs. By comparing annual acquisitions, we validated as well our approach to detect surface changes and thus map rock collapses, landslides and toe erosions affecting the shoreline at a county scale. Then, we applied a spaceborne InSAR approach to detect large slope instabilities in Argentina. Based on both phase and amplitude RaDAR signals, we extracted decisive information to detect, characterize and monitor two unknown extremely slow landslides, and to quantify water level variations of an involved close dam reservoir. Finally, advanced investigations on fragmental rockfall risk assessment were conducted along roads of the Val de Bagnes, by improving approaches of the Slope Angle Distribution and the FlowR software. Therefore, both rock-mass-failure susceptibilities and relative frequencies of block propagations were assessed and rockfall hazard and risk maps could be established at the valley scale. At slope-specific scales, in the Swiss Alps, we first integrated ground-based InSAR and terrestrial LiDAR acquisitions to map, monitor and model the Perraire rock slope deformation. By interpreting both methods individually and originally integrated as well, we therefore delimited the rockslide borders, computed volumes and highlighted non-uniform translational displacements along a wedge failure surface. Finally, we studied specific requirements and practical issues experimented on early warning systems of some of the most studied landslides worldwide. As a result, we highlighted valuable key recommendations to design new reliable systems; in addition, we also underlined conceptual issues that must be solved to improve current procedures. To sum up, the diversity of experimented situations brought an extensive experience that revealed the potential and limitations of both methods and highlighted as well the necessity of their complementary and integrated uses.
Resumo:
We sometimes vividly remember things that did not happen, a phenomenon with general relevance, not only in the courtroom. It is unclear to what extent individual differences in false memories are driven by anatomical differences in memory-relevant brain regions. Here we show in humans that microstructural properties of different white matter tracts as quantified using diffusion tensor imaging are strongly correlated with true and false memory retrieval. To investigate these hypotheses, we tested a large group of participants in a version of the Deese-Roediger-McDermott paradigm (recall and recognition) and subsequently obtained diffusion tensor images. A voxel-based whole-brain level linear regression analysis was performedto relatefractional anisotropyto indices oftrue andfalse memory recall and recognition. True memory was correlated to diffusion anisotropy in the inferior longitudinal fascicle, the major connective pathway of the medial temporal lobe, whereas a greater proneness to retrieve false items was related to the superior longitudinal fascicle connecting frontoparietal structures. Our results show that individual differences in white matter microstructure underlie true and false memory performance.
Resumo:
The Alhama de Murcia fault is a 85 km long oblique-slip fault, and is related to historical and instrumental seismic activity. A paleoseismic analysis of the Lorca-Totana sector of the fault containing MSK I=VIII historical earthquakes was made in order to identify and quantify its seismic potential. We present 1) the results of the neotectonic, structural and geomorphological analyses and, 2) the results of trenching. In the study area, the Alhama de Murcia fault forms a depressed corridor between two strands, the northwestern fault with morphological and structural features of a reverse component of slip, bounding the La Tercia range to the South, and the southeastern fault strand with evidence of sinistral oblique strike-slip movement. The offset along this latter fault trapped the sediments in transit from the La Tercia range towards the Guadalentín depression. The most recent of these sediments are arranged in three generations of alluvial fans and terraces. The first two trenches were dug in the most recent sediments across the southeastern fault strand. The results indicate a coseismic reverse fault deformation that involved the sedimentary sequence up to the intermediate alluvial fan and the Holocene terrace deposits. The sedimentary evolution observed in the trenches suggests an event of temporary damming of the Colmenar creek drainage to the South due to uplifting of the hanging wall during coseismic activation of the fault. Trench, structural and sedimentological features provide evidence of at least three coseismic events, which occurred after 125,000 yr. The minimum vertical slip rate along the fault is 0.06 mm/yr and the average recurrence period should not exceed 40,000 yr in accordance with the results obtained by fan topographic profiling. Further absolute dating is ongoing to constrain these estimates.
Resumo:
The Pyrenean mountain range is a slowly deforming belt with continuous and moderate seismic activity. To quantify its deformation field, we present the velocity field estimated from a GPS survey of the Pyrenees spanning 18 yr. The PotSis and ResPyr networks, including a total of 85 GPS sites, were installed and first measured in 1992 and 1995 1997, respectively, and remeasured in 2008 and 2010. We obtain a deformation field with velocities less than 1 mm yr−1 across the range. The estimated velocities for individual stations do not differ significantly from zero with 95 per cent confidence. Even so, we estimate a maximum extensional horizontal strain rate of 2.0 ± 1.7 nanostrain per year in a N S direction in the western part of the range. We do not interpret the vertical displacements due to their large uncertainties. In order to compare the horizontal strain rates with the seismic activity, we analyse a set of 194 focal mechanisms using three methods: (i) the 'r' factor relating their P and T axes, (ii) the stress tensors obtained by fault slip inversion and (iii) the strain-rate tensors. Stress and strain-rate tensors are estimated for: (i) the whole data set, (ii) the eastern and western parts of the range separately, and (iii) eight zones, which are defined based on the seismicity and the tectonic patterns of the Pyrenees. Each of these analyses reveals a lateral variation of the deformation style from compression and extension in the east to extension and strike-slip in the west of the range. Although the horizontal components of the strain-rate tensors estimated from the seismic data are slightly smaller in magnitude than those computed from the GPS velocity field, they are consistent within the 2σ uncertainties. Furthermore, the orientations of their principal axes agree with the mapped active faults.
Resumo:
This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments.
Resumo:
We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It is in the style of Beurling's characterization of sets of sampling for bandlimited functions and extends significantly the known characterization of Gabor frames 'without inequalities' from lattices to non-uniform sets.
Resumo:
The aim of this study is to gain a better understanding of the structure and the deformation history of a NW-SE trending regional, crustal-scale shear structure in the Åland archipelago, SW Finland, called the Sottunga-Jurmo shear zone (SJSZ). Approaches involving e.g. structural geology, geochronology, geochemistry and metamorphic petrology were utilised in order to reconstruct the overall deformation history of the study area. The study therefore describes several features of the shear zone including structures, kinematics and lithologies within the study area, the ages of the different deformation phases (ductile to brittle) within the shear zone, as well as some geothermobarometric results. The results indicate that the SJSZ outlines a major crustal discontinuity between the extensively migmatized rocks NE of the shear zone and the unmigmatised, amphibolite facies rocks SW of the zone. The main SJSZ shows overall dextral lateral kinematics with a SW-side up vertical component and deformation partitioning into pure shear and simple shear dominated deformation styles that was intensified toward later stages of the deformation history. The deformation partitioning resulted in complex folding and refolding against the SW margin of the SJSZ, including conical and sheath folds, and in a formation of several minor strike-slip shear zones both parallel and conjugate to the main SJSZ in order to accommodate the regional transpressive stresses. Different deformation phases within the study area were dated by SIMS (zircon U-Pb), ID-TIMS (titanite U-Pb) and 40Ar/39Ar (pseudotachylyte wholerock) methods. The first deformation phase within the ca. 1.88 Ga rocks of the study area is dated at ca. 1.85 Ga, and the shear zone was reactivated twice within the ductile regime (at ca. 1.83 Ga and 1.79 Ga), during which the strain was successively increasingly partitioned into the main SJSZ and the minor shear zones. The age determinations suggest that the orogenic processes within the study area did not occur in a temporal continuum; instead, the metamorphic zircon rims and titanites show distinct, 10-20 Ma long breaks in deformation between phases of active deformation. The results of this study further imply slow cooling of the rocks through 600-700ºC so that at 1.79 Ga, 2 the temperature was still at least 600ºC. The highest recorded metamorphic pressures are 6.4-7.1 kbar. At the late stages or soon after the last ductile phase (ca. 1.79 Ga), relatively high-T mylonites and ultramylonites were formed, witnessing extreme deformation partitioning and high strain rates. After the rocks reached lower amphibolite facies to amphibolite-greenschist facies transitional conditions (ca. 500-550ºC), they cooled rapidly, probably due to crustal uplift and exhumation. The shear zone was reactivated at least once within the semi-brittle to brittle regime between ca. 1.79 Ga and 1.58 Ga, as evidenced by cataclasites and pseudotachylytes. In summary, the results of this study suggest that the Sottunga-Jurmo shear zone (and the South Finland shear zone) defines a major crustal discontinuity, and played a central role in accommodating the regional stresses during and after the Svecofennian orogeny.
Resumo:
A support ring of AISI 304L stainless steel that holds vertical, parallel wires arranged in a circle forming a cylinder is studied. The wires are attached to the ring with heat-induced shrinkage. When the ring is heated with a torch the heat affected zone tries to expand while the adjacent cool structure obstructs the expansion causing upsetting. During cooling, the ring shrinks smaller than its original size clamping the wires. The most important requirement for the ring is that it should be as round as possible and the deformations should occur as overall shrinkage in the ring diameter. A three-dimensional nonlinear transient sequential thermo-structural Abaqus model is used together with a Fortran code that enters the heat flux to each affected element. The local and overall deformations in one ring inflicted by the heating are studied with a small amount of inspection on residual stresses. A variety of different cases are chosen to be studied with the model constructed to provide directional knowledge; torch flux with the means of speed, location of the wires, heating location and structural factors. The decrease of heating speed increases heat flux that rises the temperature increasing shrinkage. In a single progressive heating uneven distribution of shrinkage appears to the start/end region that can be partially fixed with using speeded heating’s to strengthen the heating of that region. Location of the wires affect greatly to the caused shrinkage unlike heating location. The ring structure affects also greatly to the shrinkage; smaller diameter, bigger ring height, thinner thickness and greater number of wires increase shrinkage.
Resumo:
Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals
Resumo:
Atherosclerosis is a chronic and progressive disease of the vasculature. Increasing coronary atherosclerosis can lead to obstructive coronary artery disease (CAD) or myocardial infarction. Computed tomography angiography (CTA) allows noninvasive assessment of coronary anatomy and quantitation of atherosclerotic burden. Myocardial blood flow (MBF) can be accurately measured in absolute terms (mL/g/min) by positron emission tomography (PET) with [15O] H O as a radiotracer. We studied the coronary microvascular dysfunction as a risk factor for future coronary calcification in healthy young men by measuring the coronary flow reserve (CFR) which is the ratio between resting and hyperemic MBF. Impaired vasodilator function was not linked with accelerated atherosclerosis 11 years later. Currently, there is a global interest in quantitative PET perfusion imaging. We established optimal thresholds of [15O] H O PET perfusion for diagnosis of CAD (hyperemic MBF of 2.3 mL/g/min and CFR of 2.5) in the first multicenter study of this type (Turku, Amsterdam and Uppsala). In myocardial bridging a segment of the coronary artery travels inside the myocardium and can be seen as intramural course (CTA) or systolic compression (invasive coronary angiography). Myocardial bridging is frequently linked with proximal atherosclerotic plaques. We used quantitative [15O] H O PET perfusion to evaluate the hemodynamic effects of myocardial bridging. Myocardial bridging was not associated with decreased absolute MBF or increased atherosclerotic burden. Speckle tracking allows quantitative echocardiographic imaging of myocardial deformation. Speckle tracking during dobutamine stress echocardiography was feasible and comparable to subjective wall motion analysis in the diagnosis of CAD. In addition, it correctly risk stratified patients with multivessel disease and extensive ischemia.