226 resultados para cytosine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 6,600 people die from acute myelogenous leukemia (AML) on an annual basis. During the past 10 to 15 years, there has been gradual overall improvements in the therapy of this disease, yet the majority of patients with AML succumb to this disease. In an attempt to improve current therapeutic strategies for AML, we became interested in a commercially available drug, dexrazoxane, which protects against anthracycline-induced cardiotoxicity. We have investigated dexrazoxane's (DEX) effects on different tissue types in an effort to determine its unique mechanism of action. Colony forming assays were used to evaluate stem-cell renewal of myeloid cells in vitro and median effect analysis was used to evaluate antagonism, synergism, or additivity. The anthracyclines, doxorubicin, daunorubicin, and idarubicin were individually combined with DEX in leukemic myeloid models to determine if the combination of the two drugs resulted in a synergistic, additive or antagonistic effect. Etoposide and cytosine arabinoside were also evaluated in combination with DEX using the same in vitro model and evaluated similarly. ^ Dexrazoxane in combination with any of the anthracyclines was schedule dependent. The combination of DEX and anthracycline resulted in a greater antitumor effect than anthracycline alone except for DEX administered 24 hours before doxorubicin or daunorubicin. These data were corroborated through median effect analysis. Etoposide in combination with dexrazoxane was synergistic for all combinations, and the combination of cytosine arabinoside and DEX was schedule dependent. In contrast, using an in vivo gastrointestinal model, DEX in combination with doxorubicin was antagonistic for almost all of the ratios used, except for the highest. A Withers' assay was used to evaluate toxicity on jejunal crypt cells. No effect was apparent for the combination of idarubicin and DEX, however, as seen with RZ, DEX in addition to radiation greatly potentiated the cytotoxic effects of radiation on crypts. These paradoxical effects of dexrazoxane were initially enigmatic, but after additional investigation, we propose a model that explains our findings. We conclude that DEX in combination with anthracyclines produces an additive to synergistic antileukemic response and may have therapeutic potential clinically. Additionally, DEX protects the gastrointestinal tract from doxorubicin toxicity, which could have clinical implications for the administration of greater doses of doxorubicin. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-aza-2'-deoxycytidine (DAC) is a cytidine analogue that strongly inhibits DNA methylation, and was recently approved for the treatment of myelodysplastic syndromes (MDS). To maximize clinical results with DAC, we investigated its use as an anti-cancer drug. We also investigated mechanisms of resistance to DAC in vitro in cancer cell lines and in vivo in MDS patients after relapse. We found DAC sensitized cells to the effect of 1-β-D-Arabinofuranosylcytosine (Ara-C). The combination of DAC and Ara-C or Ara-C following DAC showed additive or synergistic effects on cell death in four human leukemia cell lines in vitro, but antagonism in terms of global methylation. RIL gene activation and H3 lys-9 acetylation of short interspersed elements (Alu). One possible explanation is that hypomethylated cells are sensitized to cell killing by Ara-C. Turning to resistance, we found that the IC50 of DAC differed 1000 fold among and was correlated with the dose of DAC that induced peak hypomethylation of long interspersed nuclear elements (LINE) (r=0.94, P<0.001), but not with LINE methylation at baseline (r=0.05, P=0.97). Sensitivity to DAC did not significantly correlate with sensitivity to another hypomethylating agent 5-azacytidine (AZA) (r=0.44, P=0.11). The cell lines most resistant to DAC had low dCK, hENT1, and hENT2 transporters and high cytosine deaminase (CDA). In an HL60 leukemia cell line, resistance to DAC could be rapidly induced by drug exposure, and was related to a switch from monoallelic to biallelic mutation of dCK or a loss of wild type DCK allele. Furthermore, we showed that DAC induced DNA breaks evidenced by histone H2AX phosphorylation and increased homologous recombination rates 7-10 folds. Finally, we found there were no dCK mutations in MDS patients after relapse. Cytogenetics showed that three of the patients acquired new abnormalities at relapse. These data suggest that in vitro spontaneous and acquired resistance to DAC can be explained by insufficient incorporation of drug into DNA. In vivo resistance to DAC is likely due to methylation-independent pathways such as chromosome changes. The lack of cross resistance between DAC and AZA is of potential clinical relevance, as is the combination of DAC and Ara-C. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progressive increase of temperatures as well as longer seasonal drought periods revealed by climate studies correspond to fast environmental changes that forest species face with their actual genetic background. Natural selective processes cannot develop an adaptive response within this time frame. Thus the capability of forest tree species to adapt to the new environments will depend on their genetic background, but also rely on their phenotypic plasticity. Several reports have shown the involvement of epigenetic modifiers as the basis of the phenotypic plasticity, and in particular to the adaptation to abiotic stresses. DNA methylation (methylation of cytosine residues)is one the most important epigenetic modification in eukaryotes. Itis involved in specific biological processes such as gene transcription regulation, gene silencing, mobile element control or genome imprinting.Therefore, there is a great interest in analyzing cytosine methylation levels and distribution within the genome

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA mismatch repair (MMR) is a specialized system, highly conserved throughout evolution, involved in the maintenance of genomic integrity. To identify novel human genes that may function in MMR, we employed the yeast interaction trap. Using the MMR protein MLH1 as bait, we cloned MED1. The MED1 protein forms a complex with MLH1, binds to methyl-CpG-containing DNA, has homology to bacterial DNA repair glycosylases/lyases, and displays endonuclease activity. Transfection of a MED1 mutant lacking the methyl-CpG-binding domain (MBD) is associated with microsatellite instability (MSI). These findings suggest that MED1 is a novel human DNA repair protein that may be involved in MMR and, as such, may be a candidate eukaryotic homologue of the bacterial MMR endonuclease, MutH. In addition, these results suggest that cytosine methylation may play a role in human DNA repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A universal base that is capable of substituting for any of the four natural bases in DNA would be of great utility in both mutagenesis and recombinant DNA experiments. This paper describes the properties of oligonucleotides incorporating two degenerate bases, the pyrimidine base 6H,8H-3,4-dihydropyrimido[4,5-c][1,2]oxazin-7-one and the purine base N6-methoxy-2,6-diaminopurine, designated P and K, respectively. An equimolar mixture of the analogues P and K (called M) acts, in primers, as a universal base. The thermal stability of oligonucleotide duplexes were only slightly reduced when natural bases were replaced by P or K. Templates containing the modified bases were copied by Taq polymerase; P behaved as thymine in 60% of copying events and as cytosine in 40%, whereas K behaved as if it were guanine (13%) or adenine (87%). The dUTPase gene of Caenorhabditis elegans, which we have found to contain three nonidentical homologous repeats, was used as a model system to test the use of these bases in primers for DNA synthesis. A pair of oligodeoxyribonucleotides, each 20 residues long and containing an equimolar mixture of P and K at six positions, primed with high specificity both T7 DNA polymerase in sequencing reactions and Taq polymerase in PCRs; no nonspecific amplification was obtained on genomic DNA of C. elegans. Use of P and K can significantly reduce the complexity of degenerate oligonucleotide mixtures, and when used together, P and K can act as a universal base.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants, unlike other higher eukaryotes, possess all the necessary enzymatic equipment for de novo synthesis of methionine, an amino acid that supports additional roles than simply serving as a building block for protein synthesis. This is because methionine is the immediate precursor of S-adenosylmethionine (AdoMet), which plays numerous roles of being the major methyl-group donor in transmethylation reactions and an intermediate in the biosynthesis of polyamines and of the phytohormone ethylene. In addition, AdoMet has regulatory function in plants behaving as an allosteric activator of threonine synthase. Among the AdoMet-dependent reactions occurring in plants, methylation of cytosine residues in DNA has raised recent interest because impediment of this function alters plant morphology and induces homeotic alterations in flower organs. Also, AdoMet metabolism seems somehow implicated in plant growth via an as yet fully understood link with plant-growth hormones such as cytokinins and auxin and in plant pathogen interactions. Because of this central role in cellular metabolism, a precise knowledge of the biosynthetic pathways that are responsible for homeostatic regulation of methionine and AdoMet in plants has practical implications, particularly in herbicide design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectrum of mutations induced by the naturally occurring DNA adduct pyrimido[1,2-α]purin-10(3H)-one (M1G) was determined by site-specific approaches using M13 vectors replicated in Escherichia coli. M1G was placed at position 6256 in the (−)-strand of M13MB102 by ligating the oligodeoxynucleotide 5′-GGT(M1G)TCCG-3′ into a gapped-duplex derivative of the vector. Unmodified and M1G-modified genomes containing either a cytosine or thymine at position 6256 of the (+)-strand were transformed into repair-proficient and repair-deficient E. coli strains, and base pair substitutions were quantitated by hybridization analysis. Modified genomes containing a cytosine opposite M1G resulted in roughly equal numbers of M1G→A and M1G→T mutations with few M1G→C mutations. The total mutation frequency was ≈1%, which represents a 500-fold increase in mutations compared with unmodified M13MB102. Transformation of modified genomes containing a thymine opposite M1G allowed an estimate to be made of the ability of M1G to block replication. The (−)-strand was replicated >80% of the time in the unadducted genome but only 20% of the time when M1G was present. Correction of the mutation frequency for the strand bias of replication indicated that the actual frequency of mutations induced by M1G was 18%. Experiments using E. coli with different genetic backgrounds indicated that the SOS response enhances the mutagenicity of M1G and that M1G is a substrate for repair by the nucleotide excision repair complex. These studies indicate that M1G, which is present endogenously in DNA of healthy human beings, is a strong block to replication and an efficient premutagenic lesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent investigations have shown that the maintenance of genomic imprinting of the murine insulin-like growth factor 2 (Igf2) gene involves at least two factors: the DNA (cytosine-5-)-methyltransferase activity, which is required to preserve the paternal specific expression of Igf2, and the H19 gene (lying 90 kb downstream of Igf2 gene), which upon inactivation leads to relaxation of the Igf2 imprint. It is not yet clear how these two factors are related to each other in the process of maintenance of Igf2 imprinting and, in particular, whether the latter is acting through cis elements or whether the H19 RNA itself is involved. By using Southern blots and the bisulfite genomic-sequencing technique, we have investigated the allelic methylation patterns (epigenotypes) of the Igf2 gene in two strains of mouse with distinct deletions of the H19 gene. The results show that maternal transmission of H19 gene deletions leads the maternal allele of Igf2 to adopt the epigenotype of the paternal allele and indicate that this phenomenon is influenced directly or indirectly by the H19 gene expression. More importantly, the bisulfite genomic-sequencing allowed us to show that the methylation pattern of the paternal allele of the Igf2 gene is affected in trans by deletions of the active maternal allele of the H19 gene. Selection during development for the appropriate expression of Igf2, dosage-dependent factors that bind to the Igf2 gene, or methylation transfer between the parental alleles could be involved in this trans effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translesion synthesis at replication-blocking lesions requires the induction of proteins that are controlled by the SOS system in Escherichia coli. Of the proteins identified so far, UmuD′, UmuC, and RecA* were shown to facilitate replication across UV-light-induced lesions, yielding both error-free and mutagenic translesion-synthesis products. Similar to UV lesions, N-2-acetylaminofluorene (AAF), a chemical carcinogen that forms covalent adducts at the C8 position of guanine residues, is a strong replication-blocking lesion. Frameshift mutations are induced efficiently by AAF adducts when located within short repetitive sequences in a two-step mechanism; AAF adducts incorporate a cytosine across from the lesion and then form a primer-template misaligned intermediate that, upon elongation, yields frameshift mutations. Recently, we have shown that although elongation from the nonslipped intermediate depends on functional umuDC+ gene products, elongation from the slipped intermediate is umuDC+-independent but requires another, as yet biochemically uncharacterized, SOS function. We now show that in DNA Polymerase III-proofreading mutant strains (dnaQ49 and mutD5 strains), elongation from the slipped intermediate is highly efficient in the absence of SOS induction—in contrast to elongation from the nonslipped intermediate, which still requires UmuDC functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous attempts to express functional DNA cytosine methyltransferase (EC 2.1.1.37) in cells transfected with the available Dnmt cDNAs have met with little or no success. We show that the published Dnmt sequence encodes an amino terminal-truncated protein that is tolerated only at very low levels when stably expressed in embryonic stem cells. Normal expression levels were, however, obtained with constructs containing a continuation of an ORF with a coding capacity of up to 171 amino acids upstream of the previously defined start site. The protein encoded by these constructs comigrated in SDS/PAGE with the endogenous enzyme and restored methylation activity in transfected cells. This was shown by functional rescue of Dnmt mutant embryonic stem cells that contain highly demethylated genomic DNA and fail to differentiate normally. When transfected with the minigene construct, the genomic DNA became remethylated and the cells regained the capacity to form teratomas that displayed a wide variety of differentiated cell types. Our results define an amino-terminal domain of the mammalian MTase that is crucial for stable expression and function in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ribozyme RNase P absolutely requires divalent metal ions for catalytic function. Multiple Mg2+ ions contribute to the optimal catalytic efficiency of RNase P, and it is likely that the tertiary structure of the ribozyme forms a specific metal-binding pocket for these ions within the active-site. To identify base moieties that contribute to catalytic metal-binding sites, we have used in vitro selection to isolate variants of the Escherichia coli RNase P RNA with altered specificities for divalent metal. RNase P RNA variants with increased activity in Ca2+ were enriched over 18 generations of selection for catalysis in the presence of Ca2+, which is normally disfavored relative to Mg2+. Although a wide spectrum of mutations was found in the generation-18 clones, only a single point mutation was common to all clones: a cytosine-to-uracil transition at position 70 (E. coli numbering) of RNase P. Analysis of the C70U point mutant in a wild-type background confirmed that the identity of the base at position 70 is the sole determinant of Ca2+ selectivity. It is noteworthy that C70 lies within the phylogenetically well conserved J3/4-P4-J2/4 region, previously implicated in Mg2+ binding. Our finding that a single base change is sufficient to alter the metal preference of RNase P is further evidence that the J3/4-P4-J2/4 domain forms a portion of the ribozyme’s active site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil–DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-Å resolution substrate analogue and 2.0-Å resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme–DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current evidence indicates that methylation of cytosine in mammalian DNA is restricted to both strands of the symmetrical sequence CpG, although there have been sporadic reports that sequences other than CpG may also be methylated. We have used a dual-labeling nearest neighbor technique and bisulphite genomic sequencing methods to investigate the nearest neighbors of 5-methylcytosine residues in mammalian DNA. We find that embryonic stem cells, but not somatic tissues, have significant cytosine-5 methylation at CpA and, to a lesser extent, at CpT. As the expression of the de novo methyltransferase Dnmt3a correlates well with the presence of non-CpG methylation, we asked whether Dnmt3a might be responsible for this modification. Analysis of genomic methylation in transgenic Drosophila expressing Dnmt3a reveals that Dnmt3a is predominantly a CpG methylase but also is able to induce methylation at CpA and at CpT.