929 resultados para critical patch size
Resumo:
The compressive behaviour of finite unidirectional composites with a region of misaligned reinforcement is investigated via finite element analyses. Models with and without fibre bending stiffness are compared, confirming that compressive strength is accurately predicted without modelling fibre bending stiffness for real composite components which typically have waviness defects of several millimetres wavelength. Various defect parameters are investigated. Results confirm the well-known sensitivity of compressive strength to misalignment angle, and also show that compressive strength falls rapidly with the proportion of laminate width covered by the wavy region. A simple empirical equation is proposed to model the effect of a single patch of waviness in finite specimens. Other parameters such as length and position of the wavy region are found to have a smaller effect on compressive strength. The modelling approach is finally adapted to model distributed waviness and thus determine the compressive strength of composites with realistic waviness defects. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The brain encodes visual information with limited precision. Contradictory evidence exists as to whether the precision with which an item is encoded depends on the number of stimuli in a display (set size). Some studies have found evidence that precision decreases with set size, but others have reported constant precision. These groups of studies differed in two ways. The studies that reported a decrease used displays with heterogeneous stimuli and tasks with a short-term memory component, while the ones that reported constancy used homogeneous stimuli and tasks that did not require short-term memory. To disentangle the effects of heterogeneity and short-memory involvement, we conducted two main experiments. In Experiment 1, stimuli were heterogeneous, and we compared a condition in which target identity was revealed before the stimulus display with one in which it was revealed afterward. In Experiment 2, target identity was fixed, and we compared heterogeneous and homogeneous distractor conditions. In both experiments, we compared an optimal-observer model in which precision is constant with set size with one in which it depends on set size. We found that precision decreases with set size when the distractors are heterogeneous, regardless of whether short-term memory is involved, but not when it is homogeneous. This suggests that heterogeneity, not short-term memory, is the critical factor. In addition, we found that precision exhibits variability across items and trials, which may partly be caused by attentional fluctuations.
On the generality of crowding: visual crowding in size, saturation, and hue compared to orientation.
Resumo:
Perception of peripherally viewed shapes is impaired when surrounded by similar shapes. This phenomenon is commonly referred to as "crowding". Although studied extensively for perception of characters (mainly letters) and, to a lesser extent, for orientation, little is known about whether and how crowding affects perception of other features. Nevertheless, current crowding models suggest that the effect should be rather general and thus not restricted to letters and orientation. Here, we report on a series of experiments investigating crowding in the following elementary feature dimensions: size, hue, and saturation. Crowding effects in these dimensions were benchmarked against those in the orientation domain. Our primary finding is that all features studied show clear signs of crowding. First, identification thresholds increase with decreasing mask spacing. Second, for all tested features, critical spacing appears to be roughly half the viewing eccentricity and independent of stimulus size, a property previously proposed as the hallmark of crowding. Interestingly, although critical spacings are highly comparable, crowding magnitude differs across features: Size crowding is almost as strong as orientation crowding, whereas the effect is much weaker for saturation and hue. We suggest that future theories and models of crowding should be able to accommodate these differences in crowding effects.
Resumo:
The boundary condition at the solid surface is one of the important problems for the microfluidics. In this paper we study the effects of the channel sizes on the boundary conditions (BC), using the hybrid computation scheme adjoining the molecular dynamics (MD) simulations and the continuum fluid mechanics. We could reproduce the three types of boundary conditions (slip, no-slip and locking) over the multiscale channel sizes. The slip lengths are found to be mainly dependent on the interfacial parameters with the fixed apparent shear rate. The channel size has little effects on the slip lengths if the size is above a critical value within a couple of tens of molecular diameters. We explore the liquid particle distributions nearest the solid walls and found that the slip boundary condition always corresponds to the uniform liquid particle distributions parallel to the solid walls, while the no-slip or locking boundary conditions correspond to the ordered liquid structures close to the solid walls. The slip, no-slip and locking interfacial parameters yield the positive, zero and negative slip lengths respectively. The three types of boundary conditions existing in "microscale" still occur in "macroscale". However, the slip lengths weakly dependent on the channel sizes yield the real shear rates and the slip velocity relative to the solid wall traveling speed approaching those with the no-slip boundary condition when the channel size is larger than thousands of liquid molecular diameters for all of the three types of interfacial parameters, leading to the quasi-no-slip boundary conditions.
Resumo:
Nano-fibrillar adhesives can adhere strongly to surfaces as a gecko does. The size of each fiber has significant effects on the adhesion enhancement, especially on rough surfaces. In the present study, we report the size effects on the normal and shear strength of adhesion for a single viscoelastic fiber. It is found that there exists a limited region of the critical sizes under which the interfacial normal or tangential tractions uniformly attain the theoretical adhesion strength. The region for a viscoelastic fiber under tension with similar material constants to a gecko's spatula is 135-255 nm and that under torque is 26.5-52 nm. This finding is significant for the development of artificial biomimetic attachment systems.
Resumo:
Size modification of Au nanoparticles (NPs), deposited on the Au-thick film surface and irradiated by slow highly charged ions (SHCI) 40Arq+ (3 6 q 6 12) with fixed low dose of 4.3 1011 ions/cm2 and various energy ranging from 74.64 to 290.64 keV at room temperature (293.15 K), was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The effect of projectile kinetic energy on the modified size of NPs was explored by an appropriate choice of the fixed process parameters such as ion flux, irradiation temperature, incident angle, irradiation time, etc. The morphological changes of NPs were interpreted by models involving collisional mixing, Ostwald ripening (OR) and inverse Ostwald ripening (IOR) of spherical NPs on a substrate. A critical kinetic energy as well as a critical potential energy of the projectile in the Au NPs size modification process were observed.
Resumo:
We report that the brittle-ductile transition of polymers induced by temperature exhibits critical behavior. When t close to 0, the critical surface to surface interparticle distance (IDc) follows the scaling law: IDc proportional to t(-v) where t = 1 - T/T-BD(m) (T and T-BD(m) are the test temperature and brittle-ductile transition temperature of matrix polymer, respectively) and v = 2/D. It is clear that the scaling exponent v only depends on dimension (D). For 2, 3, and 4 dimension, v = 1, 2/3, and 1/2 respectively. The result indicates that the ID, follows the same scaling law as that of the correlation length (xi), when t approach to zero.
Resumo:
To study the brittle-ductile transition (BDT) of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope.
Resumo:
Monte Carlo simulation has been used to investigate the effects of linear solvent molecular size on polymer chain conformation in solutions. Increasing the solvent molecular size leads to shrinkage of the polymer chains and increase of the critical overlap concentrations. The root-mean-square radius of gyration of polymer chains (R-g) is less sensitive to the variation of polymer concentration in solutions of larger solvent molecules. In addition, the dependency of R-g on polymer concentration under normal solvent conditions and solvent molecular size is in good agreement with scaling laws. When the solvent molecular size approaches the ideal end-to-end distance of the polymer chain, an extra aggregation of polymer chains occurs, and the solvent becomes the so-called medium-sized solvent. When the size of solvent molecules is smaller than the medium size, the polymer chains are swollen or partially swollen. However, when the size of solvent molecules is larger than the medium size, the polymer coils shrink and segregate, enwrapped by the large solvent molecules.
Resumo:
A series of acrylic impact modifiers (AIMS) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle-ductile transition of impact-modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 degrees C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle-ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2-341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle-ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle-ductile transition for the PVC/AIM blends.
Resumo:
In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the "worm algorithm." Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane. © 2010 The American Physical Society.
Resumo:
Body size and development time are important life history traits because they are often highly correlated with fitness. Although the developmental mechanisms that control growth have been well studied, the mechanisms that control how a species-characteristic body size is achieved remain poorly understood. In insects adult body size is determined by the number of larval molts, the size increment at each molt, and the mechanism that determines during which instar larval growth will stop. Adult insects do not grow, so the size at which a larva stops growing determines adult body size. Here we develop a quantitative understanding of the kinetics of growth throughout larval life of Manduca sexta, under different conditions of nutrition and temperature, and for genetic strains with different adult body sizes. We show that the generally accepted view that the size increment at each molt is constant (Dyar's Rule) is systematically violated: there is actually a progressive increase in the size increment from instar to instar that is independent of temperature. In addition, the mass-specific growth rate declines throughout the growth phase in a temperature-dependent manner. We show that growth within an instar follows a truncated Gompertz trajectory. The critical weight, which determines when in an instar a molt will occur, and the threshold size, which determines which instar is the last, are different in genetic strains with different adult body sizes. Under nutrient and temperature stress Manduca has a variable number of larval instars and we show that this is due to the fact that more molts at smaller increments are taken before threshold size is reached. We test whether the new insight into the kinetics of growth and size determination are sufficient to explain body size and development time through a mathematical model that incorporates our quantitative findings.
Resumo:
Can learning quality be maintained in the face of increasing class size by the use of Computer Supported Co-operative Learning (CSCL) technologies? In particular, can Computer-Mediated Communication promote critical thinking in addition to surface information transfer? We compared face-to-face seminars with asynchronous computer conferencing in the same Information Management class. From Garrison's theory of critical thinking and Henri's critical reasoning skills, we developed two ways of evaluating critical thinking: a student questionnaire and a content analysis technique. We found evidence for critical thinking in both situations, with some subtle differences in learning style. This paper provides an overview of this work.
Resumo:
Clinical use of the imidazoquinoline immunomodulator imiquimod for the topical treatment of dysplastic and neoplastic lesions has increased markedly in recent years. However, despite guidance from the manufacturer of the proprietary imiquimod cream, there seems to be little consensus between clinicians as to the topically applied dose. Given that patients often apply the cream themselves at home, further dosing variability is expected and, consequently, accurate comparison of the results of different published studies is dif?cult. This paper describes, for the ?rst time, the formulation and physicochemical characterisation of a bioadhesive patch for dose-controlled topical delivery of imiquimod as well as a new HPLC method for sensitive ?uorescence determination of imiquimod released from such systems. Patches containing imiquimod loadings of 4.75, 9.50 and 12.50 mg cm-2 all released signi?cantly more drug across a model membrane than the proprietary cream over a period of 6 h. Inclusion of imiquimod in patches did not adversely affect their physicochemical properties. Of major importance, patches contained de?ned drug loadings per unit area; therefore, their use could reduce inter-clinician variability. This would make critical comparison of clinical studies and determination of an appropriate imiquimod dose for successful treatment much simpler. Since bioadhesive formulations are capable of adhering to body tissues in moist environments, the use of a bioadhesive patch system may allow extension of the clinical uses of imiquimod to the treatment of neoplastic conditions of the oral cavity and cervix, as well as the vulva. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio. (c) 2005 Elsevier B.V. All rights reserved.