303 resultados para craton


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fortaleza de Minas Ni-Cu-PGE sulfide deposit is hosted by Archean komatiitic rocks of the Morro do Ferro greenstone belt, near the southwestern margin of the Sa (aFrancisco) over tildeo Francisco craton, Minas Gerais state, Brazil. The deposit contains 6 million tonnes of ore with an average grade of 2.2 wt% Ni, 0.4% Cu, 0.05% Co and 1.2 ppm PGE+Au, and comprises (i) a main orebody, which is metamorphosed, deformed and transposed along a regional shear zone, consisting mainly of disseminated, brecciated and stringer sulfide ores that are interpreted to be of early magmatic origin, and (ii) PGE-rich discordant veins that are hosted in N-S- and NE-SW-trending late faults that cross-cut the main orebody. The discordant PGE-rich ore (up to 4 ppm total PGE) is characterized by thin, discontinuous and irregular veins and lenses of massive sulfides hosted by serpentinite and talc schist, and is relatively undeformed if compared with the early types of ore. It is composed mainly of pyrrhotite, pentlandite, chalcopyrite, magnetite, carbonates, and amphiboles, with minor cobaltite-gersdorffite, sphalerite, ilmenite, and quartz, and rarely maucherite (Ni11Asg), tellurides and platinum-group minerals (PGM). Omeeite, irarsite, sperrylite, and Ni-bearing merenskyite are the main PGM, followed by minor amounts of testibiopalladite and an unknown phase containing Ru, Te, and As. The PGM occur either included in, or at the margins of, sulfides, sulfarsenides, silicates and oxides, or filling fractures in pyrrhotite, pentlandite, and chalcopyrite, suggesting that they started to precipitate with these minerals and continued to precipitate after the sulfides were formed. The mantle-normalized metal distribution of the two samples of discordant veins shows distinct patterns: one richer in Ni-Pd-Ir-Rh-Ru-Os and another with higher amounts of Cu-Pt-Bi. Both are strongly depleted in Cr if compared with the metamorphosed magmatic ore of this deposit, which follows the general Kambalda-type magmatic trend. on the basis of structural, mineralogical and geochemical evidence, we propose that the PGE-rich discordant ore may have formed by remobilization of metals from the deformed, metamorphosed magmatic orebody (which shows a depleted pattern in these elements) by reduced (pyrrhotite - pentlandite - pyrite are stable), neutral to alkaline and carbonic fluids (carbonate-stable). The PGE may have been transported as bisulfide complexes, and precipitated as tellurides (mainly Pd) and arsenides (Pt, Rh, Ru, Os, Ir) in the late N-S and NE-SW-trending faults owing to a decrease in the activity of S caused by the precipitation of sulfides in the veins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oldest fragment of continental crust recognized in South America occurs as an isolated Archean enclave in northeastem Brazil's Borborema Province, ca. 600 Ma Brasiliano-Pan African orogenic belt. This Archean fragment, the Sao Jose do Campestre massif, is surrounded by large tracts of 2.2-2.0 Ga Paleoproterozoic gneisses and is located more than 600-1500 km from the much larger assemblages of Archean rocks found in the Sao Fransciso and Amazonian cratons, located to the south and west, respectively. Geochronological studies of the Sao Jose do Campestre massif show that its oldest rocks contain zircons with U-Pb ages up to 3.5 Ga and Sm-Nd T-DM model ages of more than 3.7 Ga, indicating that they represent reworked crust. This older nucleus is flanked by both reworked and juvenile 3.25 and 3.18 Ga rocks which arc intruded by both 3.00 and 2.69 Ga plutonic bodies. The protracted evolution the Sao Jose do Campestre massif is consistent with that of a larger continental mass as opposed to a small crustal fragment that grew in isolation. As such, the Sao Jose do Campestre massif is interpreted as representing a detached piece of an evolved craton that became entrained with younger rocks during a subsequent Paleoproterozoic accretionary-orogenic event. This hypothesis is bolstered by the presence of Paleoproterozoic gneisses that envelop the Sao Jose do Campestre massif, as well as the existence of ca. 2.0 Ga metamorphic zircon and monazite within its rocks. The occurrence of several different Archean cratonic basement inliers within the greater Paleoproterozoic crustal framework of the Borborema Province suggests that cratonic slices spalled off one or more larger Archean masses prior to the ca. 2.2-2.0 Ga Paleoproterozoic orogenic collage. A important challenge is to link these older fragments to their parent cratons. Although results are not unique, the pattern of ages and isotopic signatures observed in the Sao Jose do Campestre massif is similar to that seen in parts of the Sao Francisco Craton, and it is possible that the Sao Jose do Campestre massif is a fragment of an Archean continental fragment formed during an episode of continental breakup prior to 2200 Ma. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole rock Pb isotope data can be used to determine the provenance of different blocks within the Rodinia supercontinent, providing a test for paleogeographic reconstructions. Calculated isotopic values for the source region of the Grenville-deformed SW Amazon craton (Rondonia, Brazil), anchored by published U-Pb zircon ages, are compared to those from the Grenville belt of North America and Grenvillian basement inliers in the southern Appalachians. Both the SW Amazon craton and the allochthonous Blue Ridge/Mars Hill terrane are defined by a similar Pb isotopic signature, indicating derivation from an ancient source region with an elevated U/Pb ratio. In contrast, the Grenville Province of Laurentia (extending from Labrador to the Llano Uplift of Texas) is characterized by a source region with a distinctly lower, time-integrated U/Pb ratio. Published U-Pb zircon ages (ca. 1.8 Ga) and Nd model ages (1.4-2.2 Ga) for the Blue Ridge/Mars Hill terrane also suggest an ancient provenance very different from the rest of the adjacent Grenville belt, which is dominated by juvenile 1.3-1.5 Ga rocks. The presence of mature continental material in rocks older than 1.15 Ga in the Blue Ridge/ Mars Hill terrane is consistent with characteristics of basement rocks from the SW Amazon craton. High-grade metamorphism of the Blue Ridge/Mars Hill basement resulted in purging of U, consistent with observations of the rest of the North American Grenville province. In contrast, the Grenvillian metamorphic history of the Amazon appears to have been much more heterogeneous, with both U enrichment and U depletion recorded locally. We propose that the Blue Ridge/ Mars Hill portion of the Appalachian basement is of Amazonian provenance and was transferred to Laurentia during Grenvillian orogenesis after similar to1.15 Ga. The presence of these Amazonian rocks in southeastern Laurentia records the northward passage of the Amazon craton along the Laurentian margin, following the original collision with southernmost Laurentia at ca. 1.2 Ga. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes tectonic and metamorphic features of Precambrian rocks from the Guaxupe Complex and Varginha Shear Zone (VSZ) near the city of Guaxupe in the southern part of the Sao Francisco Craton, southeastern Brazil. The VSZ separates the metasediments of Araxa Group to the north from the granulites of Guaxupe Complex to the south. The sinistral transcurrent VSZ crosses the entire area striking approximately E-W, bending towards SE in the eastern part. Because of this bend, transpressional movement occurred, facilitating the exhumation of the garnet-rich rocks of the deepest exposed part of the granulite-facies terrane.In the garnet granulites the highest pressure-temperature conditions recorded are approximately 1040 degreesC and 14.4 kbar. The rocks underwent decompression from 14.0 kbar to 8.0 kbar, cooling from 980 degreesC to 710 degreesC, the retrograde path following the boundary between the kyanite and sillimanite stability fields. This interval is interpreted to record the uplift of the lower crustal granulite-facies terrane and re-equilibration during magmatic intrusions. For the felsic granulites an interval of 700-810 degreesC and 8.0-11.5 kbar was attained, also pointing to regional decompression.The granulites of the Guaxupe Complex comprise a medium- to high-pressure lower-crustal terrane, with local occurrences of higher-pressure garnet-rich gneisses, which were uplifted along a transpressional segment of the VSZ. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the Sao Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics (ca 600 Ma).In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and Sao Rogue Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The Sao Rogue Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and Vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels. (C) 1999 Elsevier B.V. Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Araes gold deposit, located in eastern Mato Grosso State, central Brazil, is hosted in Neoproterozoic volcanosedimentary rocks of the Paraguay belt, which formed during collision of the Amazonian craton and the Rio Apa block. Ar-40/Ar-39 geochronology and Pb and S isotopic analyses constrain the timing and sources of mineralization. Three biotite flakes from two samples of metavolcanic host rock yield Ar-40/Ar-39 plateau ages between 5941 and 531 Ma, interpreted as cooling ages following regional metamorphism. Clay minerals from a hydrothermal alteration zone yield an Ar-40/Ar-39 integrated age of 503 +/- 3 Ma. Galena grains from ore-bearing veins yield values of Pb-206/(204)pb from 17.952 to 18.383, Pb-207/Pb-204 from 15.156 to 15.811, and Pb-208/Pb-204 from 38.072 to 39.681. Pyrite grains from ore-bearing veins yield values of Pb-206/Pb-204 from 18.037 to 18.202, Pb-207/Pb-204 from 15.744 to 15.901., and Pb-208/(204)pb from 38.338 to 38.800. Pb isotope variations may be explained in terms of mixing a less radiogenic lead component (mu similar to 8.4) from mafic and ultramafic basement host-rocks (Nova Xavantina metavolcanosedimentary rocks) and a more radiogenic lead component (mu similar to 9.2) probably derived from supracrustal rocks (Cuiaba sedimentary groups). Sulfur isotope compositions are homogeneous, with delta S-34 values ranging from -1.1 parts per thousand to 0.9 parts per thousand (galena) and -0.7 parts per thousand to 0.9 parts per thousand (pyrite), suggesting a mantle-derived reservoir for the mineralizing solutions. Based on the Ar, Pb, and S isotope data, we suggest that the precious metals were remobilized from metavolcanic host rocks by hydrothermal solutions during Brasilide-Panafrican regional metamorphism. The Arabs gold deposit probably formed during a late stage of the orogeny, coeval with other mineralization events in the Paraguay Belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review is presented concerning Archaean granulites occurring in some old domains of the South American Platform, which was consolidated at the end of the Brazilian Cycle (900-500 Ma). The rocks occur in different geotectonic environments and show variable ages, structures and lithological associations. The most important complexes are the Atlantic Granulite Belt in the São Francisco Craton and the Goias Granulite Belt in the Central Goias Massif, both several hundred kilometres long. The former is composed of the Caraibas Complex, the Jequié Complex, the Salvador Complex and several minor granulite occurrences along the Brazilian coast in the States of Espírito Santo and Rio de Janeiro. The latter includes the large basic-ultrabasic complexes of Barro Alto, Tocantins and Canabrava. Both belts consist of massive or foliated rocks, banded or homogeneous and varying from acidic to ultrabasic in composition. They are the result of metamorphism affecting diversified supra- and infracrustal material. The Atlantic Granulite Belt lies between greenstone/granite terrains which show ovoid and boomerang-type dome structures. The contacts between both are either tectonic or transitional. Another occurrence of Archaean granulites comprises intercalations of palaeosomes and melanosomes within migmatites and anatectic rocks. These vary in size from small lenses to irregular complexes which may attain sizes of several hundred square kilometres. Apart from migmatites, they are associated with gneisses, schists and granitoid bodies. They are located in regions which underwent remobilization of varying intensity during the Middle and Late Precambrian. The rocks show polymetamorphism, K-feldspar blastesis, tectonic overprinting and isotopic rejuvenation. These granulites are in some cases very similar to those formed during the Middle Precambrian. In some places it is therefore quite difficult to distinguish between Early and Middle Precambrian granulites - the more so, since interpretations of radiometric age values are largely controversial. At present there is no evidence of granulitic rocks related to the Late Precambrian geotectonic cycles of Brazil. © 1979.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low- to medium-P Atlantic granulite belt was largely formed at 2700 m.y., but 3100 m.y. ages have been obtained from the granulite belt and adjacent craton. -J.A.H.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Araguaia-Tocantins geosuture, which separates the Araguaia Fold Belt (AFB) from the Archean Amazonian Craton, was active in the late Middle Proterozoic. The Baixo Araguaia Supergroup was deposited, consisting of the Estrondo Group (lower quartzites with intercalated schists), Xambioá Formation (schists), and Canto da Vazante Formation (upper feldspathic schists); and the Tocantins Group consisting of the Couto Magalhaës Formation (phyllites, quartzites, slates, limestones, and metacherts) and Pequizeiro Formation (upper chlorite schists); and associated mafic-ultramafic bodies. The deformational history includes four regional phases of deformation within this supracrustal sequence: recumbent folds with vergence to the west; refolding with a N-S trend; an intense crenulation episode; and late thrusting from east to west. Metamorphism is of intermediate or intermediate-high pressure type with garnet, biotite, chlorite, and sericite isograds succeeded by a slightly or non-metamorphosed zone, from east to west. Rocks surrounding sparse gneissic-cored domes contain isograds of staurolite, kyanite, and fibrolite. These isograds are believed to be associated with the 1100 Ma Uruaçuano event. The Brasiliano Orogeny strongly affected the AFB with displacements due to transcurrent reactivation of great and old faults of the basement, slight folding in the supracrustal sequence, intrusion of small granite bodies, and development of domes with associated normal faults. The area underlain by the Estrondo Group was uplifted at this time, causing the deposition of the Rio das Barreiras polymictic conglomerate of the central area. K-Ar and Rb-Sr analyses date this thermo-tectonic event at 550 ± 100 Ma. The Archean basement is exposed in the cores of domes as a granite-gneiss association, the Colméia complex, which shows thermo-tectonic features that may be interpreted as polycyclic imprints (Jequié, Transamazonian?, Uruaçuano, and Brasiliano Events). © 1989.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent field investigations and geochronological studies of Neoproterozoic rocks in the northwestern part of the Borborema Province, Ceará State, NE Brazil provide important clues pertaining to the nature of convergence between the Borborema Province and the West African-São Luis craton during the assembly of West Gondwana. U-Pb zircon data indicate that the earliest evidence of convergent magmatism along the northwest margin of the Borborema Province occurred around 777 Ma, and was followed by the development of a large continental arc batholith (Santa Quitéria batholith) between ca. 665 and 591 Ma within the central part of Ceará State. These findings, along with supporting geophysical data, suggest that convergence between the Borborema Province and the West African-São Luis craton involved closure of an oceanic realm with subduction polarity to the southeast beneath the northwestern part of the province. Consequently, it seems likely that the Pharusian Ocean was continuous from the Hoggar Province in West Africa into South America during the late Neoproterozoic and additional data suggests that it may have even been connected with the Goianides Ocean of the Brasília Belt farther to the southwest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U-Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana. Ages of detrital zircons (by ID-TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean- Paleoproterozoic ages (3.4-3.3, 3.1-2.7, and 2.5-2.4Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3-1.9Ga, with a peak at ca. 2.15Ga) and to the ca. 1.75Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2Ga, with a peak at 1.3Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin. Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6-1.2Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt. Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt. Whilst continent-continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634-599Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595-560Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588Ma, as indicated by monazite age. The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545-500Ma in the Paraguay belt and ca. 500Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50-100 million years. © 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent structural investigations and geochronological studies of rocks from the Médio Coreaú domain in the NW part of northeast Brazil's Borborema Province provide important constraints on the tectonic evolution of the region both preceeding and during the assembly of West Gondwana. Field observations of structural features and fabrics have revealed the presence of four distinct deformational phases in the MCD: D1, D2, D3 and D4. Only the early Paleoproterozoic gneisses record the D1 tectonic event and its preservation is cryptic owing to strong overprinting by the subsequent tectonic phases. The D2, D3 and D4 events affected younger supracrustal rocks and Neoproterzoic magmatic units, and U-Pb geochronological constraints show that all of these tectonic phases represent deformational events that occurred during Brasiliano collision between the West African craton and the NW part of the Borborema Province. The D2 phase, lasting between ca. 622 and 591 Ma, represents a frontal collision stage, which generated NW verging thrust-nappe systems, low-angle foliation, high-grade metamorphism and crustal anatexis. Transition to a strike-slip regime (D3) occurred at around 591 Ma when the region entered a phase of escape tectonics. During this time, the motion of crustal blocks towards NE and E was accommodated along numerous anastomosing shear zones. Syntectonic emplacement of granitoid plutons took place in transtensional domains of the shear zone system. The intrusion of late tectonic granitoids and rapid uplift and cooling of the orogen around 560 Ma as a result of D4 transpressional movements marked the end of the D3 transcurrent regime. These findings show that only the early Paleoproterozoic gneisses in the Médio Coreaú domain are polycyclic in nature. Rather than representing distinct orogenic events, the D2, D3 and D4 tectonic phases are a manifestation of progressive deformational events that developed in response to changes in the regional stress field during convergence and collision between the Borborema Province and its surrounding cratons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Around the southern margins of the São Francisco Craton, there is a zone of tectonic interference between the Brasília belt to the west and the younger Ribeira belt to the east. U-Pb monazite and 40Ar/39Ar cooling age determinations carried out in the area reveal the cooling histories of these belts and the timing of tectonic overprint, unraveling the final stages of Brasiliano Orogeny in SE Brazil. The U-Pb monazite data from migmatized paragneisses and late-stage pegmatites in the Socorro-Guaxupé Nappe System of the southern Brasília belt show that migmatization peaked between ca. 613±1 and 607±3 Ma. 40Ar/39Ar biotite and muscovite ages of paragneisses and schists in this area indicate that the northern high-grade core of the Nappe System (Guaxupé Domain) was uplifted and cooled through the 350°C isotherm between 599±1 and 587±1 Ma. In contrast, samples from the southern high-grade core of the Nappe System, the Socorro Domain, south of the Jacutinga shear zone, yields a broader and younger spectrum of 40Ar/39Ar biotite ages between 571±1 and 562±1 Ma, attributed to a later uplift and cooling of the crust. The cooling ages can be assigned to local resetting of the 40Ar/39Ar system during transpressive tectonic overprint due to reactivation as a result of collision of the Ribeira belt. A younger group of 40Ar/39Ar mica ages (537±1 to 521±1Ma) in schists of the Socorro Domain, are associated with transpressional structures of the Ribeira belt. Rock samples from the Jacutinga and Três Corações shear zones, yield 40Ar/39Ar biotite-muscovite ages around 520 Ma. These are typical cooling ages of the Ribeira belt, and are interpreted to mark the western limit of the Ribeira belt transpressional regime within the Brasília belt. The youngest biotite-muscovite cooling ages in schists of the Socorro Domain, between 510±2 and 491±1 Ma, mark the final cooling and exhumation of that part of the Brasília belt.