948 resultados para control error
Resumo:
The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.
Resumo:
Researches performed during the PhD course intended to assess innovative applications of near-infrared spectroscopy in reflectance (NIR) in the production chain of beer. The purpose is to measure by NIR the "malting quality" (MQ) parameter of barley, to monitor the malting process and to know if a certain type of barley is suitable for the production of beer and spirits. Moreover, NIR will be applied to monitor the brewing process. First of all, it was possible to check the quality of the raw materials like barley, maize and barley malt using a rapid, non-destructive and reliable method, with a low error of prediction. The more interesting result obtained at this level was that the repeatability of the NIR calibration models developed was comparable with the one of the reference method. Moreover, about malt, new kinds of validation were used in order to estimate the real predictive power of the proposed calibration models and to understand the long-term effects. Furthermore, the precision of all the calibration models developed for malt evaluation was estimated and statistically compared with the reference methods, with good results. Then, new calibration models were developed for monitoring the malting process, measuring the moisture content and other malt quality parameters during germination. Moreover it was possible to obtain by NIR an estimate of the "malting quality" (MQ) of barley and to predict whether if its germination will be rapid and uniform and if a certain type of barley is suitable for the production of beer and spirits. Finally, the NIR technique was applied to monitor the brewing process, using correlations between NIR spectra of beer and analytical parameters, and to assess beer quality. These innovative results are potentially very useful for the actors involved in the beer production chain, especially the calibration models suitable for the control of the malting process and for the assessment of the “malting quality” of barley, which need to be deepened in future studies.
Resumo:
Patients can make contributions to the safety of chemotherapy administration but little is known about their motivations to participate in safety-enhancing strategies. The theory of planned behavior was applied to analyze attitudes, norms, behavioral control, and chemotherapy patients' intentions to participate in medical error prevention.
Resumo:
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.
Resumo:
BACKGROUND: In contrast to hypnosis, there is no surrogate parameter for analgesia in anesthetized patients. Opioids are titrated to suppress blood pressure response to noxious stimulation. The authors evaluated a novel model predictive controller for closed-loop administration of alfentanil using mean arterial blood pressure and predicted plasma alfentanil concentration (Cp Alf) as input parameters. METHODS: The authors studied 13 healthy patients scheduled to undergo minor lumbar and cervical spine surgery. After induction with propofol, alfentanil, and mivacurium and tracheal intubation, isoflurane was titrated to maintain the Bispectral Index at 55 (+/- 5), and the alfentanil administration was switched from manual to closed-loop control. The controller adjusted the alfentanil infusion rate to maintain the mean arterial blood pressure near the set-point (70 mmHg) while minimizing the Cp Alf toward the set-point plasma alfentanil concentration (Cp Alfref) (100 ng/ml). RESULTS: Two patients were excluded because of loss of arterial pressure signal and protocol violation. The alfentanil infusion was closed-loop controlled for a mean (SD) of 98.9 (1.5)% of presurgery time and 95.5 (4.3)% of surgery time. The mean (SD) end-tidal isoflurane concentrations were 0.78 (0.1) and 0.86 (0.1) vol%, the Cp Alf values were 122 (35) and 181 (58) ng/ml, and the Bispectral Index values were 51 (9) and 52 (4) before surgery and during surgery, respectively. The mean (SD) absolute deviations of mean arterial blood pressure were 7.6 (2.6) and 10.0 (4.2) mmHg (P = 0.262), and the median performance error, median absolute performance error, and wobble were 4.2 (6.2) and 8.8 (9.4)% (P = 0.002), 7.9 (3.8) and 11.8 (6.3)% (P = 0.129), and 14.5 (8.4) and 5.7 (1.2)% (P = 0.002) before surgery and during surgery, respectively. A post hoc simulation showed that the Cp Alfref decreased the predicted Cp Alf compared with mean arterial blood pressure alone. CONCLUSION: The authors' controller has a similar set-point precision as previous hypnotic controllers and provides adequate alfentanil dosing during surgery. It may help to standardize opioid dosing in research and may be a further step toward a multiple input-multiple output controller.
Resumo:
Equivalence testing is growing in use in scientific research outside of its traditional role in the drug approval process. Largely due to its ease of use and recommendation from the United States Food and Drug Administration guidance, the most common statistical method for testing (bio)equivalence is the two one-sided tests procedure (TOST). Like classical point-null hypothesis testing, TOST is subject to multiplicity concerns as more comparisons are made. In this manuscript, a condition that bounds the family-wise error rate (FWER) using TOST is given. This condition then leads to a simple solution for controlling the FWER. Specifically, we demonstrate that if all pairwise comparisons of k independent groups are being evaluated for equivalence, then simply scaling the nominal Type I error rate down by (k - 1) is sufficient to maintain the family-wise error rate at the desired value or less. The resulting rule is much less conservative than the equally simple Bonferroni correction. An example of equivalence testing in a non drug-development setting is given.
Resumo:
In this dissertation, the problem of creating effective large scale Adaptive Optics (AO) systems control algorithms for the new generation of giant optical telescopes is addressed. The effectiveness of AO control algorithms is evaluated in several respects, such as computational complexity, compensation error rejection and robustness, i.e. reasonable insensitivity to the system imperfections. The results of this research are summarized as follows: 1. Robustness study of Sparse Minimum Variance Pseudo Open Loop Controller (POLC) for multi-conjugate adaptive optics (MCAO). The AO system model that accounts for various system errors has been developed and applied to check the stability and performance of the POLC algorithm, which is one of the most promising approaches for the future AO systems control. It has been shown through numerous simulations that, despite the initial assumption that the exact system knowledge is necessary for the POLC algorithm to work, it is highly robust against various system errors. 2. Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms for MCAO. The limiting performance of the non-dynamic Minimum Variance and dynamic KF-based phase estimation algorithms for MCAO has been evaluated by doing Monte-Carlo simulations. The validity of simple near-Markov autoregressive phase dynamics model has been tested and its adequate ability to predict the turbulence phase has been demonstrated both for single- and multiconjugate AO. It has also been shown that there is no performance improvement gained from the use of the more complicated KF approach in comparison to the much simpler MV algorithm in the case of MCAO. 3. Sparse predictive Minimum Variance control algorithm for MCAO. The temporal prediction stage has been added to the non-dynamic MV control algorithm in such a way that no additional computational burden is introduced. It has been confirmed through simulations that the use of phase prediction makes it possible to significantly reduce the system sampling rate and thus overall computational complexity while both maintaining the system stable and effectively compensating for the measurement and control latencies.
Resumo:
To estimate a parameter in an elliptic boundary value problem, the method of equation error chooses the value that minimizes the error in the PDE and boundary condition (the solution of the BVP having been replaced by a measurement). The estimated parameter converges to the exact value as the measured data converge to the exact value, provided Tikhonov regularization is used to control the instability inherent in the problem. The error in the estimated solution can be bounded in an appropriate quotient norm; estimates can be derived for both the underlying (infinite-dimensional) problem and a finite-element discretization that can be implemented in a practical algorithm. Numerical experiments demonstrate the efficacy and limitations of the method.
Resumo:
This dissertation discusses structural-electrostatic modeling techniques, genetic algorithm based optimization and control design for electrostatic micro devices. First, an alternative modeling technique, the interpolated force model, for electrostatic micro devices is discussed. The method provides improved computational efficiency relative to a benchmark model, as well as improved accuracy for irregular electrode configurations relative to a common approximate model, the parallel plate approximation model. For the configuration most similar to two parallel plates, expected to be the best case scenario for the approximate model, both the parallel plate approximation model and the interpolated force model maintained less than 2.2% error in static deflection compared to the benchmark model. For the configuration expected to be the worst case scenario for the parallel plate approximation model, the interpolated force model maintained less than 2.9% error in static deflection while the parallel plate approximation model is incapable of handling the configuration. Second, genetic algorithm based optimization is shown to improve the design of an electrostatic micro sensor. The design space is enlarged from published design spaces to include the configuration of both sensing and actuation electrodes, material distribution, actuation voltage and other geometric dimensions. For a small population, the design was improved by approximately a factor of 6 over 15 generations to a fitness value of 3.2 fF. For a larger population seeded with the best configurations of the previous optimization, the design was improved by another 7% in 5 generations to a fitness value of 3.0 fF. Third, a learning control algorithm is presented that reduces the closing time of a radiofrequency microelectromechanical systems switch by minimizing bounce while maintaining robustness to fabrication variability. Electrostatic actuation of the plate causes pull-in with high impact velocities, which are difficult to control due to parameter variations from part to part. A single degree-of-freedom model was utilized to design a learning control algorithm that shapes the actuation voltage based on the open/closed state of the switch. Experiments on 3 test switches show that after 5-10 iterations, the learning algorithm lands the switch with an impact velocity not exceeding 0.2 m/s, eliminating bounce.
Resumo:
This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.
Resumo:
This paper introduces an extended hierarchical task analysis (HTA) methodology devised to evaluate and compare user interfaces on volumetric infusion pumps. The pumps were studied along the dimensions of overall usability and propensity for generating human error. With HTA as our framework, we analyzed six pumps on a variety of common tasks using Norman’s Action theory. The introduced method of evaluation divides the problem space between the external world of the device interface and the user’s internal cognitive world, allowing for predictions of potential user errors at the human-device level. In this paper, one detailed analysis is provided as an example, comparing two different pumps on two separate tasks. The results demonstrate the inherent variation, often the cause of usage errors, found with infusion pumps being used in hospitals today. The reported methodology is a useful tool for evaluating human performance and predicting potential user errors with infusion pumps and other simple medical devices.
Resumo:
Next-generation sequencing (NGS) is a valuable tool for the detection and quantification of HIV-1 variants in vivo. However, these technologies require detailed characterization and control of artificially induced errors to be applicable for accurate haplotype reconstruction. To investigate the occurrence of substitutions, insertions, and deletions at the individual steps of RT-PCR and NGS, 454 pyrosequencing was performed on amplified and non-amplified HIV-1 genomes. Artificial recombination was explored by mixing five different HIV-1 clonal strains (5-virus-mix) and applying different RT-PCR conditions followed by 454 pyrosequencing. Error rates ranged from 0.04-0.66% and were similar in amplified and non-amplified samples. Discrepancies were observed between forward and reverse reads, indicating that most errors were introduced during the pyrosequencing step. Using the 5-virus-mix, non-optimized, standard RT-PCR conditions introduced artificial recombinants in a fraction of at least 30% of the reads that subsequently led to an underestimation of true haplotype frequencies. We minimized the fraction of recombinants down to 0.9-2.6% by optimized, artifact-reducing RT-PCR conditions. This approach enabled correct haplotype reconstruction and frequency estimations consistent with reference data obtained by single genome amplification. RT-PCR conditions are crucial for correct frequency estimation and analysis of haplotypes in heterogeneous virus populations. We developed an RT-PCR procedure to generate NGS data useful for reliable haplotype reconstruction and quantification.
Resumo:
Approximately 10 to 15% of breast cancer patients develop a primary cancer in the contralateral breast. This study examined differences between women with unilateral compared with bilateral primary breast cancer. It focused on hormonal factors and family history, and evaluated the prevalences of invasive lobular histology and the replication error phenotype in the tumors. ^ Cases (n = 82) were patients at M.D. Anderson Cancer Center (MDACC) in Houston, Texas diagnosed with primary breast cancer in each breast between 1985 and 1994 inclusive. Controls (n = 82) were MDACC patients with primary cancer in a single breast diagnosed during the same interval, individually matched to cases. Data were obtained by in-person and/or telephone interview with the patient and/or proxy. Replication error phenotype was determined from archival tissue. ^ Diagnosis of breast, but not ovarian, cancer in a female first-degree relative (FFDR) was a strong risk factor for bilateral cancers. Cases had a significantly 3-fold higher excess of familial breast cancer than did controls (cases: O/E = 2.65, 95% CI = 1.85–3.69; controls: 0.86, 0.46–1.47; homogeneity: p = 0.00). Risk did not vary with menopausal status of the patient, but was greatest if a relative was diagnosed before age 45 (O/E = 38.9; 95% CI = 21.7–64.1). By implication, young first-degree relatives of patients with bilateral breast cancer are at very high risk of breast cancer themselves. Cases also had significantly fewer siblings than did controls. ^ Earlier menarche, and parity in the absence of lactation, were associated with bilateral cancers; age at menopause and parity with lactation were not. A history of alcohol consumption, particularly if heavy, carried a 3.4-fold risk (p = 0.03). The data suggested a slightly different pattern in risk factors according to menopausal status and interval between cancers. ^ Replication error phenotype was available for 59 probands. It was associated with bilateral cancers (particularly if diagnosed within one year of each other), increased age (p = 0.02) and negative nodal status. Invasive lobular histology was associated with bilateral disease but numbers were small. ^ These data suggest bilateral breast cancer arises in the context of a combination of familial and hormonal factors, and alcohol consumption. The relative importance of each factor may vary by age of the patient. ^
Resumo:
To determine the role lemmings play in structuring plant communities and their contribution to the 'greening of the Arctic', we measured plant cover and biomass in 50 + year old lemming exclosures and control plots in the coastal tundra near Barrow, Alaska. The response of plant functional types to herbivore exclusion varied among land cover types. In general, the abundance of lichens and bryophytes increased with the exclusion of lemmings, whereas graminoids decreased, although the magnitude of these responses varied among land cover types. These results suggest that sustained lemming activity promotes a higher biomass of vascular plant functional types than would be expected without their presence and highlights the importance of considering herbivory when interpreting patterns of greening in the Arctic. In light of the rapid environmental change ongoing in the Arctic and the potential regional to global implications of this change, further exploration regarding the long-term influence of arvicoline rodents on ecosystem function (e.g. carbon and energy balance) should be considered a research priority.
Resumo:
Extreme winter warming events in the sub-Arctic have caused considerable vegetation damage due to rapid changes in temperature and loss of snow cover. The frequency of extreme weather is expected to increase due to climate change thereby increasing the potential for recurring vegetation damage in Arctic regions. Here we present data on vegetation recovery from one such natural event and multiple experimental simulations in the sub-Arctic using remote sensing, handheld passive proximal sensors and ground surveys. Normalized difference vegetation index (NDVI) recovered fast (2 years), from the 26% decline following one natural extreme winter warming event. Recovery was associated with declines in dead Empetrum nigrum (dominant dwarf shrub) from ground surveys. However, E. nigrum healthy leaf NDVI was also reduced (16%) following this winter warming event in experimental plots (both control and treatments), suggesting that non-obvious plant damage (i.e., physiological stress) had occurred in addition to the dead E. nigrum shoots that was considered responsible for the regional 26% NDVI decline. Plot and leaf level NDVI provided useful additional information that could not be obtained from vegetation surveys and regional remote sensing (MODIS) alone. The major damage of an extreme winter warming event appears to be relatively transitory. However, potential knock-on effects on higher trophic levels (e.g., rodents, reindeer, and bear) could be unpredictable and large. Repeated warming events year after year, which can be expected under winter climate warming, could result in damage that may take much longer to recover.