980 resultados para concentric contraction
Resumo:
PURPOSE: To evaluate wound contraction and the concentration of mast cells in skin wounds treated with 5% BPT essential oil-based ointment in rats. METHODS: Twenty rats, male, of adult age, were submitted to skin surgery on the right (RA) and left antimeres (LA) of the thoracic region. They were divided into two groups: control (RA - wounds receiving daily topical application of vaseline and lanolin) and treated (LA - wounds treated daily with the topical ointment). The skin region with wounds were collected at days 4, 7, 14 and 21 after surgery. Those were fixed in 10% formaldehyde and later processed for paraffin embedding. Sections were obtained and stained by H.E for histopathology analysis. The degree of epithelial contraction was measured and mast cell concentration were also evaluated. RESULTS: The treated group showed higher mast cell concentrations (p<0.05) associated with increased contraction at day 7 and 14 respectively. CONCLUSION: Ointment containing 5% Brazilian pepper tree oil increases mast cell concentration and promotes skin wound contraction in rats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2±2.9years) and seventeen older men (62.7±2.5years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60°.s-1 and 120°.s-1 through a functional range of motion. The older group presented lower peak torque (Nm) than the young group for both isokinetic contraction types (age effect, p<0.001). Peak torque deficits in the older group were near 30% and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120.s-1 than at 60.s-1 for both groups (angular velocity effect, p<0.001). Eccentric knee extension torque was the only exercise tested that showed an interaction effect between age and muscle length (p<0.001), which suggested different torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22% to 56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in stretched muscle length. In older men, the production of eccentric knee strength seems to be muscle length-dependent. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.
Resumo:
Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle’s activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement.
Resumo:
Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J Strength Cond Res 26(12): 3335-3344, 2012-This study aimed at comparing the effects of strength and power training (ST and PT) regimens on neuromuscular adaptations and changes on vertical jump performance, kinetics, and kinematics parameters. Forty physically active men (178.2 +/- 7.0 cm; 75.1 +/- 8.6 kg; 23.6 +/- 3.5 years) with at least 2 years of ST experience were assigned to an ST (n = 14), a PT (n = 14), or a control group (C; n = 12). The training programs were performed during 8 weeks, 3 times per week. Dynamic and isometric maximum strength, cross-sectional area, and muscle activation were assessed before and after the experimental period. Squat jump (SJ) and countermovement jump (CMJ) performance, kinetics, and kinematics parameters were also assessed. Dynamic maximum strength increased similarly (p < 0.05) for the ST (22.8%) and PT (16.6%) groups. The maximum voluntary isometric contraction increased for the ST and PT groups (p < 0.05) in the posttraining assessments. There was a main time effect for muscle fiber cross-sectional area (p < 0.05), but there were no changes in muscle activation. The SJ height increased, after ST and PT, because of a faster concentric phase and a higher rate of force development (p < 0.05). The CMJ height increased only after PT (p < 0.05), but there were no significant changes in its kinetics and kinematics parameters. In conclusion, neuromuscular adaptations were similar between the training groups. The PT seemed more effective than the ST in increasing jumping performance, but neither the ST nor the PT was able to affect the SJ and the CMJ movement pattern (e.g., timing and sequencing of joint extension initiation).
Resumo:
This study aimed to develop an equipment and system of resistance exercise (RE), based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction). Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions), and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and "disturbing" stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans.
Resumo:
Objectives: This study evaluated the influence of the cavity configuration factor ("C-Factor") and light activation technique on polymerization contraction forces of a Bis-GMA-based composite resin (Charisma, Heraeus Kulzer). Material and Methods: Three different pairs of steel moving bases were connected to a universal testing machine (Emic DL 500): groups A and B - 2x2 mm (CF=0.33), groups C and D - 3x2 mm (CF=0.66), groups E and F - 6x2 mm (CF=1.5). After adjustment of the height between the pair of bases so that the resin had a volume of 12 mm(3) in all groups, the material was inserted and polymerized by two different methods: pulse delay (100 mW/cm(2) for 5 s, 40 s interval, 600 mW/cm(2) for 20 s) and continuous pulse (600 mW/cm(2) for 20 s). Each configuration was light cured with both techniques. Tensions generated during polymerization were recorded by 120 s. The values were expressed in curves (Force(N) x Time(s)) and averages compared by statistical analysis (ANOVA and Tukey's test, p<0.05). Results: For the 2x2 and 3x2 bases, with a reduced C-Factor, significant differences were found between the light curing methods. For 6x2 base, with high C-Factor, the light curing method did not influence the contraction forces of the composite resin. Conclusions: Pulse delay technique can determine less stress on tooth/restoration interface of adhesive restorations only when a reduced C-Factor is present.
Resumo:
The heart responds to sustained overload by hypertrophic growth in which the myocytes distinctly thicken or elongate on increases in systolic or diastolic stress. Though potentially adaptive, hypertrophy itself may predispose to cardiac dysfunction in pathological settings. The mechanisms underlying the diverse morphology and outcomes of hypertrophy are uncertain. Here we used a focal adhesion kinase (FAK) cardiac-specific transgenic mice model (FAK-Tg) to explore the function of this non-receptor tyrosine kinase on the regulation of myocyte growth. FAK-Tg mice displayed a phenocopy of concentric cardiac hypertrophy, reflecting the relative thickening of the individual myocytes. Moreover, FAK-Tg mice showed structural, functional and molecular features of a compensated hypertrophic growth, and preserved responses to chronic pressure overload. Mechanistically, FAK overexpression resulted in enhanced myocardial FAK activity, which was proven by treatment with a selective FAK inhibitor to be required for the cardiac hypertrophy in this model. Our results indicate that upregulation of FAK does not affect the activity of Src/ERK1/2 pathway, but stimulated signaling by a cascade that encompasses PI3K, AKT, mTOR, S6K and rpS6. Moreover, inhibition of the mTOR complex by rapamycin extinguished the cardiac hypertrophy of the transgenic FAK mice. These findings uncover a unique role for FAK in regulating the signaling mechanisms that governs the selective myocyte growth in width, likely controlling the activity of PI3K/AKT/mTOR pathway, and suggest that FAK activation could be important for the adaptive response to increases in cardiac afterload. This article is part of a Special Issue entitled "Local Signaling in Myocytes". (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Aim: The aim of this study was to investigate the impact of circuit-based exercise on the body composition in obese older women by focusing on physical exercise and body weight (BW) gain control in older people. Methods: Seventy older women (>60 years old) voluntarily took part in the study. Participants were randomized into six different groups according to body mass index (BMI): appropriate weight (AW) control (AWC) and trained (AWT) groups, overweight (OW) control (OWC) and trained (OWT) groups, and obesity (O) control (OC) and trained (OT) groups. The exercise program consisted of 50 minutes of exercise three times per week for 12 weeks. The exercises were alternated between upper and lower body using rest between sets for 40 seconds with intensity controlled by heart rate (70% of work). The contraction time established was 5 seconds to eccentric and concentric muscular action phase. The following anthropometric parameters were evaluated: height (m), body weight (BW, kg), body fat (BF, %), fat mass (FM, kg), lean mass (LM, kg), and BMI (kg/m(2)). Results: The values (mean +/- standard deviation [SD]) of relative changes to BW (-8.0% +/- 0.8%), BF (-21.4% +/- 2.1%), LM (3.0% +/- 0.3%), and FM (-31.2% +/- 3.0%) to the OT group were higher (P < .05) than in the AWT (BW: -2.0% +/- 1.1%; BF: -4.6% +/- 1.8%; FM: -7.0% +/- 2.8%; LM: 0.2% +/- 1.1%) and OWT (BW: -4.5% +/- 1.0%; BF: -11.0% +/- 2.2%; FM: -16.1% +/- 3.2%; LM: -0.2% +/- 1.0%) groups; additionally, no differences were found for C groups. While reduction (P < .03) in BMI according to absolute values was observed for all trained groups (AWT: 22 +/- 1 versus 21 +/- 1; OWT: 27 +/- 1 versus 25 +/- 1, OT: 34 +/- 1 versus 30 +/- 1) after training, no differences were found for C groups. Conclusion: In summary, circuit-based exercise is an effective method for promoting reduction in anthropometrics parameters in obese older women.
Resumo:
Activation of TLRs (Toll-like receptors) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of CVDs (cardiovascular diseases). Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study, we hypothesize that inhibition of TLR4 decreases BP (blood pressure) and improves vascular contractility in resistance arteries from SHR (spontaneously hypertensive rats). TLR4 protein expression in mesenteric resistance arteries was higher in 15-week-old SHR than in age-matched Wistar controls or in 5-week-old SHR. To decrease the activation of TLR4, 15-week-old SHR and Wistar rats were treated with anti-TLR4 (anti-TLR4 antibody) or non-specific IgG control antibody for 15 days (1 mu g per day, intraperitoneal). Treatment with anti-TLR4 decreased MAP (mean arterial pressure) as well as TLR4 protein expression in mesenteric resistance arteries and IL-6 (interleukin 6) serum levels from SHR when compared with SHR treated with IgG. No changes in these parameters were found in treated Wistar control rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to NA (noradrenaline) compared with IgG-treated SHR. Inhibition of COX (cyclo-oxygenase)-1 and COX-2, enzymes related to inflammatory pathways, decreased NA responses only in mesenteric resistance arteries of SHR treated with IgG. COX-2 expression and TXA(2) (thromboxane A(2)) release were decreased in SHR treated with anti-TLR4 compared with IgG-treated SHR. Our results suggest that TLR4 activation contributes to increased BP, low-grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.
Resumo:
Background. Further clarification is needed with regard to the degree of atrophy in individual muscle groups and its possible relationship to joint torque deficit poststroke. Objective. The purpose of this study was to investigate quadriceps and hamstring muscle volume and strength deficits of the knee extensors and flexors in people with chronic hemiparesis compared with a control group. Design. This was a cross-sectional study. Methods. Thirteen individuals with hemiparesis due to chronic stroke (hemiparetic group) and 13 individuals who were healthy (control group) participated in this study. Motor function, quadriceps and hamstring muscle volume, and maximal concentric and eccentric contractions of the knee extensors and flexors were assessed. Results. Only the quadriceps muscle of the paretic limb showed reduced muscle volume (24%) compared with the contralateral (nonparetic) limb. There were no differences in muscle volume between the hemiparetic and control groups. The peak torque of the paretic-limb knee extensors and flexors was reduced in both contraction modes and velocities compared with the nonparetic limb (36%-67%) and with the control group (49%-75%). The nonparetic limb also showed decreased extensor and flexor peak torque compared with the control group (17%-23%). Power showed similar deficits in strength (12%-78%). There were significant correlations between motor function and strength deficits (.54-.67). Limitations. Magnetic resonance imaging coil length did not allow measurement of the proximal region of the thigh. Conclusions. There were different responses between quadriceps and hamstring muscle volumes in the paretic limb that had quadriceps muscle atrophy only. However, both paretic and nonparetic limbs showed knee extensor and flexor torque and power reduction.
Resumo:
The modulation played by reactive oxygen species on the angiotensin II-induced contraction in type I-diabetic rat carotid was investigated. Concentration-response curves for angiotensin II were obtained in endothelium-intact or endothelium-denuded carotid from control or streptozotocin-induced diabetic rats, pre-treated with tiron (superoxide scavenger), PEG-catalase (hydrogen peroxide scavenger), dimethylthiourea (hydroxyl scavenger), apocynin [NAD(P) H oxidase inhibitor], SC560 (cyclooxygenase-1 inhibitor), SC236 (cyclooxygenase-2 inhibitor) or Y-27632 (Rho-kinase inhibitor). Reactive oxygen species were measured by flow cytometry in dihydroethidium (DHE)-loaded endothelial cells. Cyclooxygenase and AT1-receptor expression was assessed by immunohistochemistry. Diabetes increased the angiotensin II-induced contraction but reduced the agonist potency in rat carotid. Endothelium removal, tiron or apocynin restored the angiotensin II-induced contraction in diabetic rat carotid to control levels. PEG-catalase, DMTU or SC560 reduced the angiotensin II-induced contraction in diabetic rat carotid at the same extent. SC236 restored the angiotensin II potency in diabetic rat carotid. Y-27632 reduced the angiotensin II-induced contraction in endothelium-intact or -denuded diabetic rat carotid. Diabetes increased the DHE-fluorescence of carotid endothelial cells. Apocynin reduced the DHE-fluorescence of endothelial cells from diabetic rat carotid to control levels. Diabetes increased the muscular cyclooxygenase-2 expression but reduced the muscular AT1-receptor expression in rat carotid. In summary, hydroxyl radical, hydrogen peroxide and superoxide anion-derived from endothelial NAD(P) H oxidase mediate the hyperreactivity to angiotensin II in type I-diabetic rat carotid, involving the participation of cyclooxygenase-1 and Rho-kinase. Moreover, increased muscular cyclooxygenase-2 expression in type I-diabetic rat carotid seems to be related to the local reduced AT1-receptor expression and the reduced angiotensin II potency. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Objective. To test the hypothesis that the difference in the coefficient of thermal contraction of the veneering porcelain above (˛liquid) and below (˛solid) its Tg plays an important role in stress development during a fast cooling protocol of Y-TZP crowns. Methods. Three-dimensional finite element models of veneered Y-TZP crowns were developed. Heat transfer analyses were conducted with two cooling protocols: slow (group A) and fast (groups B–F). Calculated temperatures as a function of time were used to determine the thermal stresses. Porcelain ˛solid was kept constant while its ˛liquid was varied, creating different ˛/˛solid conditions: 0, 1, 1.5, 2 and 3 (groups B–F, respectively). Maximum ( 1) and minimum ( 3) residual principal stress distributions in the porcelain layer were compared. Results. For the slowly cooled crown, positive 1 were observed in the porcelain, orientated perpendicular to the core–veneer interface (“radial” orientation). Simultaneously, negative 3 were observed within the porcelain, mostly in a hoop orientation (“hoop–arch”). For rapidly cooled crowns, stress patterns varied depending on ˛/˛solid ratios. For groups B and C, the patterns were similar to those found in group A for 1 (“radial”) and 3 (“hoop–arch”). For groups D–F, stress distribution changed significantly, with 1 forming a “hoop-arch” pattern while 3 developed a “radial” pattern. Significance. Hoop tensile stresses generated in the veneering layer during fast cooling protocols due to porcelain high ˛/˛solid ratio will facilitate flaw propagation from the surface toward the core, which negatively affects the potential clinical longevity of a crown.
Resumo:
Early malnutrition refers to inadequate nutrition during the critical period of nervous system development followed by nutritional recovery, resulting in a short stature according to age but normal weight according to short stature. We measured the effects of early malnutrition on contrast sensitivity (CS) to concentric circular gratings in 18 children of both sexes, aged 8 to 11 years (mean = 9.2 years, standard deviation = .99 years). Nine of the children were eutrophic (E group), and nine experienced early malnutrition (EM group) based on state healthcare records and Waterlow's anthropometric parameters. Contrast sensitivity to four spatial frequencies (.25, 1.0, 2.0, and 8.0 cycles per degree [cpd]) was measured using a temporal two-alternative forced-choice psychophysical method with mean luminance of 40.1 cd/m². Statistical analyses showed significant differences between groups and a group × frequency interaction. EM group was significantly less sensitive than the E group to the 8.0 cpd frequency and needed 1.49-times more contrast to detect the gratings. These results suggest that early malnutrition impairs CS to high-spatial-frequency concentric circular gratings in children. Therefore, early malnutrition, which is known to affect primary visual cortical areas, may also affect higher visual cortical areas such as V4 and the inferotemporal cortex.