857 resultados para clustering and QoS-aware routing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial data warehouses (SDWs) allow for spatial analysis together with analytical multidimensional queries over huge volumes of data. The challenge is to retrieve data related to ad hoc spatial query windows according to spatial predicates, avoiding the high cost of joining large tables. Therefore, mechanisms to provide efficient query processing over SDWs are essential. In this paper, we propose two efficient indices for SDW: the SB-index and the HSB-index. The proposed indices share the following characteristics. They enable multidimensional queries with spatial predicate for SDW and also support predefined spatial hierarchies. Furthermore, they compute the spatial predicate and transform it into a conventional one, which can be evaluated together with other conventional predicates by accessing a star-join Bitmap index. While the SB-index has a sequential data structure, the HSB-index uses a hierarchical data structure to enable spatial objects clustering and a specialized buffer-pool to decrease the number of disk accesses. The advantages of the SB-index and the HSB-index over the DBMS resources for SDW indexing (i.e. star-join computation and materialized views) were investigated through performance tests, which issued roll-up operations extended with containment and intersection range queries. The performance results showed that improvements ranged from 68% up to 99% over both the star-join computation and the materialized view. Furthermore, the proposed indices proved to be very compact, adding only less than 1% to the storage requirements. Therefore, both the SB-index and the HSB-index are excellent choices for SDW indexing. Choosing between the SB-index and the HSB-index mainly depends on the query selectivity of spatial predicates. While low query selectivity benefits the HSB-index, the SB-index provides better performance for higher query selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic texture is a recent field of investigation that has received growing attention from computer vision community in the last years. These patterns are moving texture in which the concept of selfsimilarity for static textures is extended to the spatiotemporal domain. In this paper, we propose a novel approach for dynamic texture representation, that can be used for both texture analysis and segmentation. In this method, deterministic partially self-avoiding walks are performed in three orthogonal planes of the video in order to combine appearance and motion features. We validate our method on three applications of dynamic texture that present interesting challenges: recognition, clustering and segmentation. Experimental results on these applications indicate that the proposed method improves the dynamic texture representation compared to the state of the art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Precipitation and desert dust event occurrence time series measured in the Canary Islands region are examined with the primary intention of exploring their scaling characteristics as well as their spatial variability in terms of the islands topography and geographical orientation. In particular, the desert dust intrusion regime in the islands is studied in terms of its relationship with visibility. Analysis of dust and rainfall events over the archipelago exhibits distributions in time that obey power laws. Results show that the rain process presents a high clustering and irregular pattern on short timescales and a more scattered structure for long ones. In contrast, dustiness presents a more uniform and dense structure and, consequently, a more persistent behaviour on short timescales. It was observed that the fractal dimension of rainfall events shows an important spatial variability, which increases with altitude, as well as towards northern latitudes and western longitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike traditional wireless networks, characterized by the presence of last-mile, static and reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by collections of mobile and static terminals that exchange data by enabling each other's communication. Supporting multi-hop communication in a MANET is a challenging research area because it requires cooperation between different protocol layers (MAC, routing, transport). In particular, MAC and routing protocols could be considered mutually cooperative protocol layers. When a route is established, the exposed and hidden terminal problems at MAC layer may decrease the end-to-end performance proportionally with the length of each route. Conversely, the contention at MAC layer may cause a routing protocol to respond by initiating new routes queries and routing table updates. Multi-hop communication may also benefit the presence of pseudo-centralized virtual infrastructures obtained by grouping nodes into clusters. Clustering structures may facilitate the spatial reuse of resources by increasing the system capacity: at the same time, the clustering hierarchy may be used to coordinate transmissions events inside the network and to support intra-cluster routing schemes. Again, MAC and clustering protocols could be considered mutually cooperative protocol layers: the clustering scheme could support MAC layer coordination among nodes, by shifting the distributed MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the system benefits of the clustering scheme could be emphasized by the pseudo-centralized MAC layer with the support for differentiated access priorities and controlled contention. In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering and routing protocols in MANETs. As main contribution, we study and analyze the integration of MAC and clustering schemes to support multi-hop communication in large-scale ad hoc networks. A novel clustering protocol, named Availability Clustering (AC), is defined under general nodes' heterogeneity assumptions in terms of connectivity, available energy and relative mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol, named Differentiated Distributed Coordination Function (DDCF), whose focus is to implement adaptive access differentiation based on the node roles, which have been assigned by the upper-layer's clustering scheme. We extensively simulate the proposed clustering scheme by showing its effectiveness in dominating the network dynamics, under some stressing mobility models and different mobility rates. Based on these results, we propose a possible application of the cross-layer MAC+Clustering scheme to support the fast propagation of alert messages in a vehicular environment. At the same time, we investigate the integration of MAC and routing protocols in large scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by extending the AOMDV protocol with a novel load-balancing approach to concurrently distribute the traffic among the multiple paths. We also study the composition effect of a IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF), used to reduce the effects of self-contention among frames at the MAC layer. The protocol framework is modelled and extensively simulated for a large set of metrics and scenarios. For both the schemes, the simulation results reveal the benefits of the cross-layer MAC+routing and MAC+clustering approaches over single-layer solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are different ways to do cluster analysis of categorical data in the literature and the choice among them is strongly related to the aim of the researcher, if we do not take into account time and economical constraints. Main approaches for clustering are usually distinguished into model-based and distance-based methods: the former assume that objects belonging to the same class are similar in the sense that their observed values come from the same probability distribution, whose parameters are unknown and need to be estimated; the latter evaluate distances among objects by a defined dissimilarity measure and, basing on it, allocate units to the closest group. In clustering, one may be interested in the classification of similar objects into groups, and one may be interested in finding observations that come from the same true homogeneous distribution. But do both of these aims lead to the same clustering? And how good are clustering methods designed to fulfil one of these aims in terms of the other? In order to answer, two approaches, namely a latent class model (mixture of multinomial distributions) and a partition around medoids one, are evaluated and compared by Adjusted Rand Index, Average Silhouette Width and Pearson-Gamma indexes in a fairly wide simulation study. Simulation outcomes are plotted in bi-dimensional graphs via Multidimensional Scaling; size of points is proportional to the number of points that overlap and different colours are used according to the cluster membership.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Sub-Saharan Africa, non-democratic events, like civil wars and coup d'etat, destroy economic development. This study investigates both domestic and spatial effects on the likelihood of civil wars and coup d'etat. To civil wars, an increase of income growth is one of common research conclusions to stop wars. This study adds a concern on ethnic fractionalization. IV-2SLS is applied to overcome causality problem. The findings document that income growth is significant to reduce number and degree of violence in high ethnic fractionalized countries, otherwise they are trade-off. Income growth reduces amount of wars, but increases its violent level, in the countries with few large ethnic groups. Promoting growth should consider ethnic composition. This study also investigates the clustering and contagion of civil wars using spatial panel data models. Onset, incidence and end of civil conflicts spread across the network of neighboring countries while peace, the end of conflicts, diffuse only with the nearest neighbor. There is an evidence of indirect links from neighboring income growth, without too much inequality, to reduce the likelihood of civil wars. To coup d'etat, this study revisits its diffusion for both all types of coups and only successful ones. The results find an existence of both domestic and spatial determinants in different periods. Domestic income growth plays major role to reduce the likelihood of coup before cold war ends, while spatial effects do negative afterward. Results on probability to succeed coup are similar. After cold war ends, international organisations seriously promote democracy with pressure against coup d'etat, and it seems to be effective. In sum, this study indicates the role of domestic ethnic fractionalization and the spread of neighboring effects to the likelihood of non-democratic events in a country. Policy implementation should concern these factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

China is a large country characterized by remarkable growth and distinct regional diversity. Spatial disparity has always been a hot issue since China has been struggling to follow a balanced growth path but still confronting with unprecedented pressures and challenges. To better understand the inequality level benchmarking spatial distributions of Chinese provinces and municipalities and estimate dynamic trajectory of sustainable development in China, I constructed the Composite Index of Regional Development (CIRD) with five sub pillars/dimensions involving Macroeconomic Index (MEI), Science and Innovation Index (SCI), Environmental Sustainability Index (ESI), Human Capital Index (HCI) and Public Facilities Index (PFI), endeavoring to cover various fields of regional socioeconomic development. Ranking reports on the five sub dimensions and aggregated CIRD were provided in order to better measure the developmental degrees of 31 or 30 Chinese provinces and municipalities over 13 years from 1998 to 2010 as the time interval of three “Five-year Plans”. Further empirical applications of this CIRD focused on clustering and convergence estimation, attempting to fill up the gap in quantifying the developmental levels of regional comprehensive socioeconomics and estimating the dynamic convergence trajectory of regional sustainable development in a long run. Four clusters were benchmarked geographically-oriented in the map on the basis of cluster analysis, and club-convergence was observed in the Chinese provinces and municipalities based on stochastic kernel density estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subjective quality of life (SQOL) is an important outcome in the treatment of patients with schizophrenia. However, there is only limited evidence on factors influencing SQOL, and little is known about whether the same factors influence SQOL in patients with schizophrenia and other mental disorders. This study aimed to identify the factors associated with SQOL and test whether these factors are equally important in schizophrenia and other disorders. For this we used a pooled data set obtained from 16 studies that had used either the Lancashire Quality of Life Profile or the Manchester Short Assessment of Quality of Life for assessing SQOL. The sample comprised 3936 patients with schizophrenia, mood disorders, and neurotic disorders. After controlling for confounding factors, within-subject clustering, and heterogeneity of findings across studies in linear mixed models, patients with schizophrenia had more favourable SQOL scores than those with mood and neurotic disorders. In all diagnostic groups, older patients, those in employment, and those with lower symptom scores had higher SQOL scores. Whilst the strength of the association between age and SQOL did not differ across diagnostic groups, symptom levels were more strongly associated with SQOL in neurotic than in mood disorders and schizophrenia. The association of employment and SQOL was stronger in mood and neurotic disorders than in schizophrenia. The findings may inform the use and interpretation of SQOL data for patients with schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venoms are very complex mixtures of biologically active proteins and peptides that may affect hemostasis in many ways, by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. They have been classified into various families, including serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. Venom proteins affect platelet function in particular by binding to and blocking or clustering and activating receptors or by cleaving receptors or von Willebrand factor. They may also activate protease-activated receptors or modulate ADP release or thromboxane A(2) formation. L-amino acid oxidases activate platelets by producing H(2)O(2). Many of these purified components are valuable tools in platelet research, providing new information about receptor function and signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present studies of the spatial clustering of inertial particles embedded in turbulent flow. A major part of the thesis is experimental, involving the technique of Phase Doppler Interferometry (PDI). The thesis also includes significant amount of simulation studies and some theoretical considerations. We describe the details of PDI and explain why it is suitable for study of particle clustering in turbulent flow with a strong mean velocity. We introduce the concept of the radial distribution function (RDF) as our chosen way of quantifying inertial particle clustering and present some original works on foundational and practical considerations related to it. These include methods of treating finite sampling size, interpretation of the magnitude of RDF and the possibility of isolating RDF signature of inertial clustering from that of large scale mixing. In experimental work, we used the PDI to observe clustering of water droplets in a turbulent wind tunnel. From that we present, in the form of a published paper, evidence of dynamical similarity (Stokes number similarity) of inertial particle clustering together with other results in qualitative agreement with available theoretical prediction and simulation results. We next show detailed quantitative comparisons of results from our experiments, direct-numerical-simulation (DNS) and theory. Very promising agreement was found for like-sized particles (mono-disperse). Theory is found to be incorrect regarding clustering of different-sized particles and we propose a empirical correction based on the DNS and experimental results. Besides this, we also discovered a few interesting characteristics of inertial clustering. Firstly, through observations, we found an intriguing possibility for modeling the RDF arising from inertial clustering that has only one (sensitive) parameter. We also found that clustering becomes saturated at high Reynolds number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software must be constantly adapted to changing requirements. The time scale, abstraction level and granularity of adaptations may vary from short-term, fine-grained adaptation to long-term, coarse-grained evolution. Fine-grained, dynamic and context-dependent adaptations can be particularly difficult to realize in long-lived, large-scale software systems. We argue that, in order to effectively and efficiently deploy such changes, adaptive applications must be built on an infrastructure that is not just model-driven, but is both model-centric and context-aware. Specifically, this means that high-level, causally-connected models of the application and the software infrastructure itself should be available at run-time, and that changes may need to be scoped to the run-time execution context. We first review the dimensions of software adaptation and evolution, and then we show how model-centric design can address the adaptation needs of a variety of applications that span these dimensions. We demonstrate through concrete examples how model-centric and context-aware designs work at the level of application interface, programming language and runtime. We then propose a research agenda for a model-centric development environment that supports dynamic software adaptation and evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving map

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (Le., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external datábase. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show a cluster based routing protocol in order to improve the convergence of the clusters and of the network it is proposed to use a backup cluster head. The use of a event discrete simulator is used for the implementation and the simulation of a hierarchical routing protocol called the Backup Cluster Head Protocol (BCHP). Finally it is shown that the BCHP protocol improves the convergence and availability of the network through a comparative analysis with the Ad Hoc On Demand Distance Vector (AODV)[1] routing protocol and Cluster Based Routing Protocol (CBRP)[2]