1000 resultados para characterization,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of bovine interphotoreceptor matrix and conditioned medium from human Y-79 retinoblastoma cells by gelatin SDS-PAGE zymography reveals abundant activity of a 72-kDa M(r) gelatinase. The 72-kDa gelatinase from either source is inhibited by EDTA but not aprotinin or NEM, indicating that it is a metalloproteinase (MMP). The 72-kDa MMP is converted to a 62-kDa species with APMA treatment after gelatin sepharose affinity purification typical of previously described gelatinase MMP-2. The latent 72-kDa gelatinase from either bovine IPM or Y-79 media autoactivates without APMA in the presence of calcium and zinc after 72 hr at 37°C, producing a fully active mixture of proteinase species, 50 (48 in Y-79 medium), 38 and 35 kDa in size. The presence of inhibitory activity was examined in both whole bovine IPM and IPM fractions separated by SDS-PAGE. Whole IPM inhibited gelatinolytic activity of autoactivated Y-79-derived MMP in a dose-dependent manner. Inhibitory activities are observed in two protein fractions of 27-42 and 20-25 kDa. Western blots using antibodies to human tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and -2) reveal the presence of two TIMP-1-like proteins at 21 and 29 kDa in inhibitory fractions of the bovine IPM. TIMP-2 was not detected in the inhibitory IPM fractions, consistent with the observed autoactivation of bovine IPM 72-kDa gelatinase. Potential roles for this IPM MMP-TIMP system include physiologic remodelling of the neural retina-RPE cell interface and digestion of shed rod outer segment as well as pathological processes such as retinal detachment, PE cell migration, neovascularization and tumor progression. Cultured Y-79 cells appear to be a good model for studying the production and regulation of this proteinase system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two unique test systems were designed and built to allow the effects of varied gravity (high, normal, reduced) during synthesis of titanium sol–gels to be studied. A centrifuge capable of providing high gravity environments of up to 70 g for extended periods while applying a 100 mbar vacuum and a temperature of 40–50 °C to the reaction chambers was developed. The second system was used in the QUT Microgravity Drop Tower Facility also provided the same thermal and vacuum conditions used in the centrifuge, but was required to operate autonomously during free fall. Through the use of post synthesis instrumental characterization, it was found that increased gravity levels during synthesis, had the greatest effect on the final products. Samples produced in reduced and normal gravity appeared to form amorphous gels containing very small particles with moderate surface areas. Whereas crystalline anatase (TiO2), was found to form in samples synthesized above 5 g with significant increases in crystallinity, particle size and surface area observed when samples were produced at gravity levels up to 70 g. It is proposed that for samples produced in higher gravity, an increased concentration gradient of water is forms at the bottom of the reacting film due to forced convection. The particles formed in higher gravity diffuse downward toward this excess of water, which favors the condensation reaction of remaining sol–gel precursors with the particles promoting increased particle growth. Due to the removal of downward convection in reduced gravity, particle growth due to condensation reaction processes are physically hindered hydrolysis reactions favored instead. Another significant finding from this work was that anatase could be produced at relatively low temperatures of 40–50 °C instead of the conventional method of calcination above 450 °C solely through sol–gel synthesis at higher gravity levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral sulphohalite – Na6(SO4)2FCl is a rare sodium halogen sulphate and occurs associated with evaporitic deposits. Sulphohalite formation is important in saline evaporites and in pipe scales. Sulphohalite is an anhydrous sulphate–halide with an apparent variable anion ratio of formula Na6(SO4)2FCl. Such a formula with oxyanions lends itself to vibrational spectroscopy. The Raman band at 1003 cm−1 is assigned to the (SO4)2− ν1 symmetric stretching mode. Shoulders to this band are found at 997 and 1010 cm−1. The low intensity Raman bands at 1128, 1120 and even 1132 cm−1 are attributed to the (SO4)2− ν3 antisymmetric stretching vibrations. Two symmetric sulphate stretching modes are observed indicating at least at the molecular level the non-equivalence of the sulphate ions in the sulphohalite structure. The Raman bands at 635 and 624 cm−1 are assigned to the ν4 SO42− bending modes. The ν2 (SO4)2− bending modes are observed at 460 and 494 cm−1. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from Td to C3v or even C2v. No evidence of bands attributable to the halide ions was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some important issues related to the self-organization in the arrays of nanoparticles on solid surfaces exposed to the low-temperature plasma are analysed and discussed. The available tools for the characterization of the size and position uniformity in nanoarrays are examined. The technique capable of revealing the realistic adsorbed atom and adsorbed radical capture zone pattern based on the surface physics is indicated as the most promising characterization tool. The processes responsible for the self-organization are analysed, the main driving forces of the self-organization are discussed, and possible ways to control the self-organization by controlling the plasma parameters are introduced. A view on the possible ways to further improve the methods of nanoarray characterization and self-organization is presented as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient hydrogenated diamond-like carbon (DLC) film deposition in a plasma reactor that features both the capacitive and inductively coupled operation regimes is reported. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (LF ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. The films deposited in the electrostatic mode feature graphite-like structure. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. Raman spectrometry suggests the possibility to control relative proportions of sp2 and sp3 hybridized carbon. Variation of the DC substrate bias results in dramatic modification of the film structure from the polymeric (unbiased substrates) to the diamond-like (optimized bias). It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 20 m Torr H-mode CH4+Ar gas mixture discharge, the DLC film exhibits mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microplasma generated between a stainless-steel capillary and water surface in ambient air with flowing argon as working gas appears as a bright spot at the tube orifice and expands to form a larger footprint on the water surface, and the dimensions of the bell-shaped microplasma are all below 1 mm. The electron density of the microplasma is estimated to be ranging from 5.32 × 109 cm−3 to 2.02 × 1014 cm−3 for the different operating conditions, which is desirable for generating abundant amounts of reactive species. A computational technique is adopted to fit the experimental emission from the N2 second positive system with simulation results. It is concluded that the vibrational temperature (more than 2000 K) is more than twice the gas temperature (more than 800 K), which indicates the non-equilibrium state of the microplasma. Both temperatures showed dependence on the discharge parameters (i.e., gas flow and discharge current). Such a plasma device could be arranged in arrays for applications utilizing plasmainduced liquid chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved photoluminescence spectroscopy experiments of three poly(2,8-indenofluorene) derivatives bearing different pendant groups are presented. A comparison of the photophysical properties of dilute solutions and thin films provides information on the chemical purity of the materials. The photophysical properties of poly(2,8-indenofluorene)s are correlated with the morphological characteristics of their corresponding films. Wide-angle X-ray scattering experiments reveal the order in these materials at the molecular level. The spectroscopic results confirm the positive impact of a new synthetic approach on the spectral purity of the poly(indenofluorene)s. It is concluded that complete side-chain substitution of the bridgehead carbon atoms C-6 and C-12 in the indenofluorene unit, prior to indenofluorene ring formation, reduces the probability of keto formation. Due to the intrinsic chemical purity of the arylated derivative, identification of a long-delayed spectral feature, other than the known keto band, is possible in the case of thin films. Controlled doping experiments on the arylated derivative with trace amounts of an indenofluorene-monoketone provide quantitative information on the rates of two major photophysical processes, namely, singlet photoluminescence emission and singlet photoluminescence quenching. These results allow the determination of the minimum keto concentration that can affect the intrinsic photophysical properties of this polymer. The data suggest that photoluminescence quenching operates in the doped films according to the Stern-Volmer formalism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diketopyrrolopyrrole (DPP) with fluorenone (FN) based low band gap alternating copolymer (PDPPT-alt-FN) has been synthesized via Suzuki coupling. PDPPT-alt-FN exhibits a deep HOMO level with a lower band gap. Fabricated organic thin film transistors using PDPPT-alt-FN as a channel semiconductor show p-channel behaviour with the highest hole mobility of 0.083 cm2 V-1 s-1 measured in air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of alternating copolymers of tetraalkylindenofluorene with bithiophene and terthiophene using Suzuki polycondensation route is reported. We report on the optical and electrochemical properties of these copolymers. AFM analysis of the microscopic morphology of thin deposits showed that the copolymer with terthiophene units produced the more ordered films, with well-defined fibrillar structures, resulting from highly-regular dense packing due to strong π-π interchain interactions, in contrast to the amorphous bithiophene copolymer. Upon testing these materials in FETs the terthienyl copolymers displayed the higher charge mobilities among the studied compounds, with values of over 10-4 cm2 V-1 s-1 being obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterization of solution processable donor-acceptor-donor (D-A-D) based conjugated molecules with varying ratios of thiophene as donor (D) and benzothiadiazole as acceptor (A) are reported. Optical, electrochemical, thermal, morphological and organic thin film transistor (OTFT) device properties of these materials were investigated. The thermal and polarized optical microscope analysis indicates that the materials having higher D/A ratios exhibit both liquid crystalline (LC) and OTFT behavior. AFM analysis of the materials having D/A ratios of 3 and 4 (3T1B and 4T1B) show well ordered structures, resulting from strong π-π interchain interactions compared to the other molecules in this study. A XRD patterns for 3T1B and 4T1B thin films also shows high crystalline ordering. Solution processed OTFTs of 3T1B and 4T1B have shown un-optimized charge carrier mobilities of 2 × 10 -2 cm 2 V -1 s -1 and 4 × 10 -3 cm 2 V -1 s -1, respectively on bare Si/SiO 2 substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report design, synthesis and characterization of solution processable low band gap polymer semiconductors, poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-phenylene} (PDPP-FPF), poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene} (PDPP-FNF) and poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-anthracene} (PDPP-FAF) using the furan-containing 3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBF) building block. As DBF acts as an acceptor moiety, a series of donor-acceptor (D-A) copolymers can be generated when it is attached alternatively with phenylene, naphthalene or anthracene donor comonomer blocks. Optical and electrochemical characterization of thin films of these polymers reveals band gaps in the range of 1.55-1.64 eV. These polymers exhibit excellent hole mobility when used as the active layer in organic thin-film transistor (OTFT) devices. Among the series, the highest hole mobility of 0.11 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices using PDPP-FNF. When these polymers are used as a donor and [70]PCBM as the acceptor in organic photovoltaic (OPV) devices, power conversion efficiencies (PCE) of 2.5 and 2.6% are obtained for PDPP-FAF and PDPP-FNF polymers, respectively. Such mobility values in OTFTs and performance in OPV make furan-containing DBF a very promising block for designing new polymer semiconductors for a wide range of organic electronic applications.