283 resultados para caprolactone
Resumo:
Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
本论文采用阴离子逐步加料方法,成功地合成了各种组成法的PS-b-PCL嵌段共聚物。通过对PS-b-PCL嵌段共聚物的微相结构的透射电镜观察发现PS-b-PCL随PCL含量的不同及制样条件的变化,可以形成不同的微相结构。在PS-b-PCL/PCL共混体系中,发现了体系可以形成规则的环状球晶,而且消光环之间的距离随嵌段共聚物含量增加而减小,同时还发现环状球晶中有更细微的结构。
Resumo:
Baeyer-Villiger氧化反应是一种很重要的化学反应,产生的许多中间体或产物可以被用来生产多种化学产品和药物。此反应具有多功能性,可以氧化多种羰基化合物,但是化学方法中的必需反应物——氧化剂在生产、储存、运输、反应的过程中都存在很多的不安全因素,反应的立体选择性也不强,而生物转化则具有底物选择性、立构选择性、化学选择性、对映选择性等一般化学反应中不具备的优点,在精细化工中占有很大的优势。在工业生物催化中有很好的应用前景。 为了研究生物催化的Baeyer-Villiger反应,我们从本实验室保藏菌种中分离筛选出一株能够以环己酮作为唯一碳源的菌株,进行初步研究并对其产物进行GC/MS定性,探讨了pH,装液量,底物浓度,培养时间,温度以及转速等条件对细菌生长的影响,并进一步研究了细菌的底物广谱性。 此菌株经鉴定属于邻单胞菌属Plesiomonas sp.), 根据正交试验,确定了菌的最佳生长条件:底物浓度为1mL/L,底物浓度过高对菌株生长有抑制作用,转速为150 rpm ,温度为30℃ ,pH为7.0; 此菌株转化环己酮的产物通过GC/MS检测含有内酯,表明此菌株能够催化Baeyer-Villiger氧化反应;此菌株还能够以与环己酮有相似结构的环己烷,环戊酮等作为唯一碳源生长,说明此菌株底物利用范围比较广,用途比较广泛。 Baeyer-Villiger oxidation is an important chemical conversion, its products and intermediates can be used to produce a lot of medicine and fine chemicals. Its success is largely due to its versatility: a variety of carbonyl compounds can be oxidized, a large number of functional groups are tolerated, the regiochemistry is highly predictable and so on, but the oxidants that the traditional chemistry way needs have a number of problem in their production, storage, transportation and reaction, Chemistry way has not a high stereochemistry yet. However, biotransformations have many attractive characters, such as substrate-, stereo-, chemo- and enantioselectivity, so it has a great advantage in the fine chemical industry and has a bright prospect in the industrial biological catalysis. In order to study Baeyer-Villiger oxidation, we isolated a strain which can utilize cyclohexanone as sole carbon source and had a primary research on it. Its product was identified by GC/MS. Effects of pH, volume, concentration of cyclohexanone, cultivating time, temperature and rotate speed on the growth of bacteria were discussed, and the other organic substrates were also studied. The strain was identified as Plesiomonas sp.. The result of orthogonal test made it sure that the best growth condition of the strain is: rotate speed 150 rpm, temperature 30℃, pH7.0, concentration of cyclohexanone1ml/L. There is caprolactone in the product of the fermentation with cyclohexanone as substrate by GC/MS,which indicated that the strain can catalyse Baeyer-Villiger oxidation.In addition,the strain can utilize other organic substrates having the similar structure with cyclohexanone such as cyclohexane, cyclopentanone, Swertiamarin as sole carbon source.So the strain can be applied extentively.
Resumo:
In order to deal with the complicated relationships among the variables of the reactive extrusion process for activated anionic polymerization, a three-dimensional equivalent model of closely intermeshing co-rotating twin screw extruders was established. Then the numerical computation expressions of the monomer concentration, the monomer conversion, the average molecular weight and the fluid viscosity were deduced, and the numerical simulation of the reactive extrusion process of Styrene was carried out. At last, our simulated results were compared with Michaeli's simulated results and experimental results. (C) 2007 Elsevier B.V. All rights reserved
Resumo:
Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.
Resumo:
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato) yttrium chlorides 3a, 3b, 4a, 4b, 5a, 5b, 5c and 9. The X-ray structure of each has been determined, as well as of [YCl(L-4)(2)] (6), [Y(L-1)(2)OBut] (7) and [Y{CH(SiMe3)(2)}(thf)(mu-Cl)(2)Li(OEt2)(2)(mu-Cl)](2) (8).
Resumo:
The first aryldiimine NCN-pincer ligated rare earth metal dichlorides (2,6-(2,6-C6H3R2N=CH)(2)C6H3)LnCl(2)(THF)(2) (Ln = Y, R = Me (1), Et (2), Pr (3); R = Et, Ln = La (4), Nd (5), Gd (6), Sm (7), Eu (8), Tb (9), Dy (10), Ho (11), Yb (12), Lu (13)) were successfully synthesized via transmetalation between 2,6-(2,6-C2H3-R2N=CH)(2)-C6H3Li and LnCl(3)(THF)(1 similar to 3.5). These complexes are isostructural monomers with two coordinating THF molecules, where the pincer ligand coordinates to the central metal ion in a kappa C:kappa N: kappa N' tridentate mode, adopting a meridional geometry.
Resumo:
A series of enolic Schiff base aluminum(III) complexes LAIR (where L = NNOO-tetradentate enolic Schiff base ligand) containing ligands that differ in their steric and electronic properties were synthesized. Their single crystals showed that these complexes are five -coordinated around the aluminum center. Their coordination geometries are between square pyramidal and trigonal bipyramidal. Their catalytic properties in the solution polymerization of racemic lactide (rac-LA) were examined. The modifications in the auxiliary ligand exhibited a dramatic influence on the catalytic performance.
Resumo:
A series of novel poly(ester-carbonate)s bearing pendant allyl ester groups P(LA-co-MAC)s were prepared by ring-opening copolymerization Of L-lactide (LA) and 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC) with diethyl zinc (ZnEt2) as initiator. NMR analysis investigated the microstructure of the copolymer. DSC results indicated that the copolymers displayed a single glass-transition temperature (T-g), which was indicative of a random copolymer, and the Tg decreased with increasing carbonate content in the copolymer.
Resumo:
Polycarbodiimide (CDI) was used to improve the thermal stability of poly(L-lactic acid) (PLA) during processing. The properties of PLA containing various amounts of CDI were characterized by GPC, DSC, rheology, and tensile tests. The results showed that an addition of CDI in an amount of 0.1-0.7 wt% with respect to PLA led to stabilization of PLA at even 210 degrees C for up to 30 min, as evidenced by much smaller changes in molecular weight. melt viscosity, and tensile strength and elongation compared to the blank PLA samples. In order to examine the possible stabilization mechanism, CDI was reacted with water, acetic acid, L-lactic acid, ethanol and low molecular weight PLA. The molecular structures of the reaction products were measured with FTIR.
Resumo:
Amphiphilic biodegradable star-shaped polymer was conveniently prepared by the Sn(Oct)(2)-catalyzed ring opening polymerization of c-caprolactone (CL) with hyperbranched poly(ester amide) (PEA) as a macroinitiator. Various monomer/initiator ratios were employed to vary the length of the PCL arms. H-1 NMR and FTIR characterizations showed the successful synthesis of star polymer with high initiation efficiency. SEC analysis using triple detectors, RI, light scattering, and viscosity confirmed the controlled manner of polymerization and the star architecture.
Resumo:
Synthetic routes to aluminium ethyl complexes supported by chiral tetradentate phenoxyamine (salan-type) ligands [Al(OC6H2(R-6-R-4)CH2)(2){CH3N(C6H10)NCH3}-C2H5] 7: R = H ; 5, 8: R = Cl; 6, 9: R = CH3) are reported. Enantiornerically pure salan ligands 1-3 with (R,R) configurations at their cyclohexane rings afforded the complexes 4, 5, and 6 as mixtures of two diastereoisomers (a and b). Each diastereoisomer a was, as determined by X-ray analysis, monomeric with a five-coordinated aluminium central core in the solid state, adopting a cis-(O,O) and cis-(Me,Me) ligand geometry. From the results of variable-temperature (VT) H-1 NMR in the temperature range of 220-335 K, H-1-H-1 NOESY at 220 K, and diffusion-ordered spectroscopy (DOSY), it is concluded that each diastereoisomer b is also monomeric with a five-coordinated aluminium central core.
Resumo:
A series of aluminum ethyls and isopropoxides based on a bis(pyrrolidene) Schiff base ligand framework has been prepared and characterized. NMR studies of the dissolved complexes indicate that they adopt a symmetric structure with a monomeric, five-coordinated aluminum center core. The aluminum ethyls used as catalysts in the presence of 2-propanol as initiator and the aluminum isopropoxides were applied for lactide polymerization in toluene to test their activities and stereoselectivities. All polymerizations are living, as evidenced by the narrow polydispersities and the good fit between calculated and found number-average molecular weights of the isolated polymers. All of these aluminum complexes polymerized (S,S)-lactide to highly isotactic PLA without epimerization of the monomer, furnished isotactic-biased polymer from rac-lactide, and gave atactic polymer from meso-lactide.
Resumo:
BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.
Resumo:
A functionalized. cyclic carbonate monomer containing a cinnamate moiety, 5-methyl-5-cinnamoyloxymethyl-1,3-dioxan-2-one (MC), was prepared for the first time with 1,1,1-tri(hydroxymethyl) ethane as a starting material. Subsequent polymerization of the new cyclic carbonate and its copolymerization with L-lactide (LA) were successfully performed with diethyl zinc (ZnEt2) as initiator/catalyst. NMR was used for microstructure identification of the obtained monomer and copolymers. Differential scanning calorimetry (DSC) was used to characterize the functionalized poly(ester-carbonate). The results indicated that the copolymers displayed a single glass transition temperature (T-g) and the T, decreased with increasing carbonate content and followed the Fox equation, indicative of a random microstructure of the copolymer. The photo-crosslinking of the cinnamate-carrying copolymer was also demonstrated.