191 resultados para calorimetric
Resumo:
Apolipoprotein A-1 (apoA-1) in complex with high-density lipoprotein is critically involved in the transport and metabolism of cholesterol and in the pathogenesis of atherosclerosis. We reexamined the thermal unfolding of lipid-free apoA-1 in low-salt solution at pH approximately 7, by using differential scanning calorimetry and circular dichroism. At protein concentrations <5 mg/ml, thermal unfolding of apoA-1 is resolved as an extended peak (25 degrees C-90 degrees C) that can be largely accounted for by a single reversible non-two-state transition with midpoint Tm 57 +/- 1 degree C, calorimetric enthalpy deltaH(Tm)= 200 +/- 20 kcal/mol (1 kcal = 4.18 kJ), van't Hoff enthalpy deltaHv(Tm) approximately 32.5 kcal/mol, and cooperativity deltaHv(Tm)/deltaH(Tm) approximately 0.16. The enthalpy deltaH(Tm) can be accounted for by melting of the alpha-helical structure that is inferred by CD to constitute approximately 60% of apoA-1 amino acids. Farand near-UV CD spectra reveal noncoincident melting of the secondary and tertiary structural elements and indicate a well-defined secondary structure but a largely melted tertiary structure for apoA-1 at approximately 37 degrees C and pH 7. This suggests a molten globular-like state for lipid-free apoA-1 under near-physiological conditions. Our results suggest that in vivo lipid binding by apoA-1 may be mediated via the molten globular apolipoprotein state in plasma.
Resumo:
The Escherichia coli chaperonins GroEL and GroES facilitate the refolding of polypeptide chains in an ATP hydrolysis-dependent reaction. The elementary steps in the binding and release of polypeptide substrates to GroEL were investigated in surface plasmon resonance studies to measure the rates of binding and dissociation of a normative variant of subtilisin. The rate constants determined for GroEL association with and dissociation from this variant yielded a micromolar dissociation constant, in agreement with independent calorimetric estimates. The rate of GroEL dissociation from the nonnative chain was increased significantly in the presence of 5'-adenylylimidodiphosphate (AMP-PNP), ADP, and ATP, yielding maximal values between 0.04 and 0.22 s(-1). The sigmoidal dependence of the dissociation rate on the concentration of AMP-PNP and ADP indicated that polypeptide dissociation is limited by a concerted conformational change that occurs after nucleotide binding. The dependence of the rate of release on ATP exhibited two sigmoidal transitions attributable to nucleotide binding to the distal and proximal toroid of a GroEL-polypeptide chain complex. The addition of GroES resulted in a marked increase in the rate of nonnative polypeptide release from GroEL, indicating that the cochaperonin binds more rapidly than the dissociation of polypeptides. These data demonstrate the importance of nucleotide binding-promoted concerted conformational changes for the release of chains from GroEL, which correlate with the sigmoidal hydrolysis of ATP by the chaperonin. The implications of these findings are discussed in terms of a working hypothesis for a single cycle of chaperonin action.
Resumo:
The influence of thermally induced changes in the lipid core structure on the oxidative resistance of discrete, homogeneous low density lipoprotein (LDL) subspecies (d, 1.0297-1.0327 and 1.0327-1.0358 g/ml) has been evaluated. The thermotropic transition of the LDL lipid core at temperatures between 15 degrees C and 37 degrees C, determined by differential scanning calorimetry, exerted significant effects on the kinetics of copper-mediated LDL oxidation expressed in terms of intrinsic antioxidant efficiency (lag time) and diene production rate. Thus, the temperature coefficients of oxidative resistance and maximum oxidation rate showed break points at the core transition temperature. Temperature-induced changes in copper binding were excluded as the molecular basis of such effects, as the saturation of LDL with copper was identical below and above the core transition. At temperatures below the transition, the elevation in lag time indicated a greater resistance to oxidation, reflecting a higher degree of antioxidant protection. This effect can be explained by higher motional constraints and local antioxidant concentrations, the latter resulting from the freezing out of antioxidants from crystalline domains of cholesteryl esters and triglycerides. Below the transition temperature, the conjugated diene production rate was decreased, a finding that correlated positively with the average size of the cooperative units of neutral lipids estimated from the calorimetric transition width. The reduced accessibility and structural hindrance in the cluster organization of the core lipids therefore inhibits peroxidation. Our findings provide evidence for a distinct effect of the dynamic state of the core lipids on the oxidative susceptibility of LDL and are therefore relevant to the atherogenicity of these cholesterol-rich particles.
Resumo:
Carbon molecular sieve membranes have been analyzed in supported and unsupported configurations in this experimental study. The membranes were used to adsorb CO2, N2 and CH4, and their adsorption data were analyzed to establish differences in rate and capacity of adsorption between the two types of samples (supported and unsupported). Experimental results show an important effect of the support, which can be considered as an additional parameter to tailor pore size on these carbon membranes. Immersion calorimetry values were measured by immersing the membranes into liquids of different molecular dimensions (dichloromethane, benzene, n-hexane, 2,2-dimethylbutane). Similarities were found between adsorption and calorimetric analysis. The pore volume of the samples analyzed ranged from 0.016 to 0.263 cm3/g. The effect of the pyrolysis temperature, either 550 or 700 °C, under N2 atmosphere was also analyzed. Quantification of the pore-size distribution of the support was done by liquid-liquid displacement porosimetry. The composite membrane was used for CO2/CH4 separation before and after pore plugging was done. The ideal selectivity factors value (4.47) was over the Knudsen theoretical factor (0.60) for membrane pyrolyzed at 600 °C, which indicates the potential application of these membranes for the separation of low-molecular weight gases.
Resumo:
Attention is drawn to the feasibility of using isothermal calorimetry for the characterization of enzyme reactions under conditions bearing greater relevance to the crowded biological environment, where kinetic parameters are likely to differ significantly from those obtained by classical enzyme kinetic studies in dilute solution. An outline of the application of isothermal calorimetry to the determination of enzyme kinetic parameters is followed by considerations of the nature and consequences of crowding effects in enzyme catalysis. Some of those effects of thermodynamic non-ideality are then illustrated by means of experimental results from calorimetric studies of the effect of molecular crowding on the kinetics of catalysis by rabbit muscle pyruvate kinase. This review concludes with a discussion of the potential of isothermal calorimetry for the experimental determination of kinetic parameters for enzymes either in biological environments or at least in media that should provide reasonable approximations of the crowded conditions encountered in vivo. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The glass transition temperature and the second transition (the endothermic change between the glass transition and melting temperatures) of fructose were studied. The thermal history strongly affected both transitions of fructose. Storage for 10 days at 22degreesC increased the dynamic glass transition temperature from 16 to 25degreesC and decreased the second transition of fructose from 110 to 98degreesC in the first differential scanning calorimetric (DSC) scan. The amplitude of the second transition increased slightly with storage time and reached 260% of the first transition for vacuum oven dried samples. The effect of thermal history on the glass transition temperature of fructose can be removed by scanning the sample in a DSC to 130degreesC. The effects of water content, glucose and sucrose on the two transitions were also investigated.
Resumo:
The role of non-carbohydrate surface components of granular starch in determining gelatinisation behaviour has been tested by treatment of native starches with a range of extractants. Resulting washed starches were analysed for (bio)chemical, calorimetric and theological properties. Sodium dodecyl sulphate (SDS) was the most efficient extractant tested, and resulted in major changes to the subsequent theological properties of wheat and maize starches but not other starches. Three classes of starch granule swelling behaviour are identified: (i) rapid swelling (e.g. waxy maize, potato), (ii) slow swelling that can be converted to rapid swelling by extraction of surface proteins and lipids (e.g. wheat, maize), and (iii) limited swelling not affected by protein/lipid extraction (e.g. high amylose maize/potato). Comparison of a range of extractants suggests that all of protein, lipid and amylose are involved in restriction of swelling for wheat or maize starches. Treatment of starches with SDS leads to a residue at comparable (low) levels of SDS for all starches. C-13 NMR analysis shows that this SDS is present as a glucan inclusion complex, even for waxy maize starch. We infer that under the conditions used, glucan inclusion complexation of SDS is equally likely with amylopectin as with amylose. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Three different stoichiometric forms of RbMn[Fe(CN) ]y·zHO [x = 0.96, y = 0.98, z = 0.75 (1); x = 0.94, y = 0.88, z = 2.17 (2); x = 0.61, y = 0.86, z = 2.71 (3)] Prussian blue analogues were synthesized and investigated by magnetic, calorimetric, Raman spectroscopic, X-ray diffraction, and Fe Mössbauer spectroscopic methods. Compounds 1 and 2 show a hysteresis loop between the high-temperature (HT) Fe(S = 1/2)-CN-Mn(S = 5/2) and the low-temperature (LT) Fe(S = 0)-CN-Mn(S = 2) forms of 61 and 135 K width centered at 273 and 215 K, respectively, whereas the third compound remains in the HT phase down to 5 K. The splitting of the quadrupolar doublets in the Fe Mössbauer spectra reveal the electron-transfer-active centers. Refinement of the X-ray powder diffraction profiles shows that electron-transfer-active materials have the majority of the Rb ions on only one of the two possible interstitial sites, whereas nonelectron-transfer-active materials have the Rb ions equally distributed. Moreover, the stability of the compounds with time and following heat treatment is also discussed. © Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
Resumo:
A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)6] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materials. The method allows correct description of the equilibrium structures of the different electronic configurations with regard to the cell parameters and bond distances. In agreement with the experimental data, the calculations have shown that the low-temperature phase (LT; Fe(2+)(t(6)2g, S = 0)-CN-Mn(3+)(t(3)2g e(1)g, S = 2)) is the stable phase at low temperature instead of the high-temperature phase (HT; Fe(3+)(t(5)2g, S = 1/2)-CN-Mn(2+)(t(3)2g e(2)g, S = 5/2)). Additionally, the method gives an estimation for the enthalpy difference (HT LT) with a value of 143 J mol(-1) K(-1). The comparison of our calculations with experimental data from the literature and from our calorimetric and X-ray photoelectron spectroscopy measurements on the Rb0.97Mn[Fe(CN)6]0.98 x 1.03 H2O compound is analyzed, and in general, a satisfactory agreement is obtained. The method also predicts the metastable nature of the electronic configuration of the high-temperature phase, a necessary condition to photoinduce that phase at low temperatures. It gives a photoactivation energy of 2.36 eV, which is in agreement with photoinduced demagnetization produced by a green laser.
Resumo:
The transamidating activity of tissue transglutaminase is regulated by the ligands calcium and GTP, via conformational changes which facilitate or interfere with interaction with the peptidyl-glutamine substrate. We have analysed binding of these ligands by calorimetric and computational approaches. In the case of GTP we have detected a single high affinity site (K (D) approximately 1 muM), with moderate thermal effects suggestive that binding GTP involves replacement of GDP, normally bound to the protein. On line with this possibility no significant binding was observed during titration with GDP and computational studies support this view. Titration with calcium at a high cation molar excess yielded a complex binding isotherm with a number of "apparent binding sites" in large excess over those detectable by equilibrium dialysis (6 sites). This binding pattern is ascribed to occurrence of additional thermal contributions, beyond those of binding, due to the occurrence of conformational changes and to catalysis itself (with protein self-crosslinking). In contrast only one site for binding calcium with high affinity (K (D) approximately 0.15 muM) is observed with samples of enzyme inactivated by alkylation at the active site (to prevent enzyme crosslinkage and thermal effects of catalysis). These results indicate an intrinsic ability of tissue transglutaminase to bind calcium with high affinity and the necessity of careful reassessment of the enzyme regulatory pattern in relation to the concentrations of ligands in living cells, taking also in account effects of ligands on protein subcellular compartimentation.
Resumo:
This thesis is primarily concerned with the synthesis and polymerization of 5-methyl-1;3, 2-dioxathiolan-4-one-2-oxide (lactic acid anhydrosulphite (LAAS)) using anionic initiators under various conditions. Poly(lactic acid) is a biodegradable polymer which finds many uses in biomedical applications such as drug-delivery and wound-support systems. For such applications it is desirable to produce polymers having predictable molecular weight distributions and crystallinity, The use of anionic initiators offers a potential route to the creation of living polymers. The synthesis of LAAS was achieved by means of an established route though the procedure was modified to some extent and a new method of purification of the monomer using copper oxides was introduced, Chromatographic purification methods were also examined but found to be ineffective. An unusual impurity was discovered in some syntheses and this was identified by means of 1H and 13C NMR, elemental analysis and GC-MS. Since poly-α-esters having hydroxyl-bearing substituents might be expected to have high equilibrium water contents and hence low surface tension characteristics which might aid bio-compatibility, synthesis of gluconic acid anhydrosulphite was also attempted and the product characterised by 1H and 13C NMR. The kinetics of the decomposition of lactic acid anhydrosulphite by lithium tert-butoxide in nitrobenzene has been examined by means of gas evolution measurements. The kinetics of the reaction with potassium tert-butoxide (and also sec-butyl lithium) in tetrahydrofuran has been studied using calorimetric techniques. LAAS was block co-polymerized with styrene and also with 1,3-butadiene in tetrahydrofuran (in the latter case a statistical co-polymer was also produced).
Resumo:
The oxidation behaviour of porous, sintered iron was studied by thermo-gravimetric analysis (TGA), at temperatures between 300oC and 700oC, in a flowing atmosphere of 20% O2/80% N2. Samples for TGA tests were compacted from pure iron powder, at 150MPa to 550MPa, and vacuum sintered at 1120oC. The mass gain of samples during oxidation was recorded continuously for a period of 24 hours. It was found that the oxidation mass gain of PM samples depended on the permeability of the pore structure and the temperature. At low temperatures, the oxidising gas was able to permeate through the pore structure, causing the oxidation of a large active surface area. At high temperatures the active surface area was smaller, because oxygen diffusing into the pore structure, from the external atmosphere, was adsorbed by pore surfaces close to the external surface of the compact. Although the weight of the external oxide scale on compacts increased with increasing oxidation temperature, the absence of oxide in the core porosity in compacts oxidised at higher temperatures resulted in smaller mass gains than were observed for compacts oxidised at lower temperatures. The heat generated by the oxidation of the large active surface areas of porous samples was studied by thermo-calorimetric analysis (TCA). It was determined that this phenomenon could raise the core temperature of samples significantly above the ambient furnace temperature, and affecting the morphology of the oxide scale formed. The effects (on oxidation behaviour at 500oC) of small, elemental alloy additions of Al, Cu, P and Si to pure iron powder were studied. It was found that elements that promote pore rounding during sintering caused a significant reduction in the mass gain rate of the PM alloys, compared to the PM pure iron. The oxidation resistance due to these elements prevented pore closure by oxide growth, so that the active surface area of these PM alloys remained high. The PM alloys were also studied by thermo-mechanical analysis (TMA, dilatometry), to determine their dimensional stability during sintering and subsequent elevated temperature service. The oxidation experiment was augmented with optical and electron microscopy, and X-ray analysis of alloy and scale compositions.
Resumo:
The concept of shallow fluidized bed boilers is defined and a preliminary working design for a gas-fired package boiler has been produced. Those areas of the design requiring further study have been specified. Experimental investigations concerning these areas have been carried out. A two-dimensional, conducting paper analog has been developed for the specific purpose of evaluating sheet fins. The analog has been generalised and is presented as a simple means of simulating the general, two-dimensional Helmholtz equation. By recording the transient response of spherical, calorimetric probes when plunged into heated air-fluidized beds, heat transfer coefficients have been measured at bed temperatures up to 1 100°C. A correlation fitting all the data to within ±10% has been obtained. A model of heat transfer to surfaces immersed in high temperature beds has been proposed. The model solutions are, however, only in qualitative agreement with the experimental data. A simple experimental investigation has revealed that the effective, radial, thermal conductivities of shallow fluidized beds are an order of magnitude lower than the axial conductivities. These must, consequently, be taken into account when considering heat transfer to surfaces immersed within fluidized beds. Preliminary work on pre-mixed gas combustion and some further qualitative experiments have been used as the basis for discussing the feasibility of combusting heavy fuel oils within shallow beds. The use of binary beds, within which the fuel could be both gasified and subsequently burnt, is proposed. Finally, the consequences of the experimental studies on the initial design are considered, and suggestions for further work are made.
Resumo:
The preThe present work is a study of the optical properties of some surfaces, in order to determine their applications in solar energy utilisation. An attempt has been made to investigate and measure the optical properties of two systems of surface moderately selective surfaces like thermally grown oxide of titanium, titanium oxide en aluminium and thermally grown oxides of stainless steel; and, selective surfaces of five different coloured stainless at (INCO surfaces) and of black nickel foil. A calorimetric instrument based on the steady state method for measuring directly the total emittance has been designed. Chapter 1 is an introductory survey of selective surface. It also includes a brief review of various preparation techniques in use since 1955. Chapter 2 investigates the theory of selective surfaces, defining their optical properties and their figures of merit. It also outlines the method of computing the optical properties (i.e. absorptance, a, and emittance, a) which have been adopted for the present work. Chapter 3 describes the measuring technique and the modes of operation of the equipment used in the experimental work carried out. Chapter 4 gives the results of the experimental work to measure the optical properties, the life testing and chemical composition of the surfaces under study. Chapter 5 deals with the experimentation leading to the design of a calorimetric instrument for measuring the total emmitance directly. Chapter 6 presents concluding remarks about the outcome of the present work and some suggestions for further work. sent work is a study of the optical properties of some surfaces, in order to determine their applications in solar energy utilisation. An attempt has been made to investigate and measure the optical properties of two systems of surface moderately selective surfaces like thermally grown oxide of titanium, titanium oxide en aluminium and thermally grown oxides of stainless steel; and, selective surfaces of five different coloured stainless at (INCO surfaces) and of black nickel foil. A calorimetric instrument based on the steady state method for measuring directly the total emittance has been designed. Chapter 1 is an introductory survey of selective surface. It also includes a brief review of various preparation techniques in use since 1955. Chapter 2 investigates the theory of selective surfaces, defining their optical properties and their figures of merit. It also outlines the method of computing the optical properties (i.e. absorptance, a, and emittance, a) which have been adopted for the present work. Chapter 3 describes the measuring technique and the modes of operation of the equipment used in the experimental work carried out. Chapter 4 gives the results of the experimental work to measure the optical properties, the life testing and chemical composition of the surfaces under study. Chapter 5 deals with the experimentation leading to the design of a calorimetric instrument for measuring the total emmitance directly. Chapter 6 presents concluding remarks about the outcome of the present work and some suggestions for further work.
Resumo:
In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.