957 resultados para buffalo bulls
Resumo:
O desenvolvimento de técnicas não invasivas e não destrutivas para a avaliação da composição e qualidade de carcaça em animais tem mobilizado consideráveis recursos em pesquisa. A ultra-sonografia aparece neste contexto como uma técnica viável, confiável e de custo aceitável para esta função. No presente trabalho foi avaliada a técnica de ultra-sonografia em tempo real como ferramenta para predição da área de olho-de-lombo (AOL) e espessura da camada de gordura subcutânea (ECG) a partir de imagens tomadas em animais vivos, quando comparadas com as medições na carcaça. Foram utilizados 115 bovinos jovens (30, ½ Angus x Nellore; 30, ½ Canchim x Nellore; 30, ½ Simental x Nellore, e 25 Nellores), com peso inicial médio de 329 kg e de dois tamanhos à maturidade (pequeno e grande), no sistema de produção do novilho superprecoce. As medidas de ultra-sonografia foram realizadas a cada 28 dias totalizando quatro medições até o final do confinamento. A precisão da predição aumentou em função da proximidade da data do abate, sendo máxima na quarta medida (R²= 0,68 para AOL e 0,82 para ECG). Houve efeito de grupo genético e de medida ultra-sonográfica para ECG. O tamanho corporal não teve efeito sobre nenhuma das características estudadas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mechanisms of testicular thermoregulation, the relationship of scrotal, testicular vascular cone (TVC), and testicular morphology with thermoregulatory capability, and their effects on semen quality and sperm production were studied in 20 Bos indicus, 28 crossbred, and 26 Bos taurus bulls. The ratio of testicular artery length and volume to testicular volume were larger (P < 0.05) in B. indicus and crossbred bulls than in B. taurus bulls (1.03 and 0.94 cm/cm(2). versus 0.48 cm/cm(3); 0.034 and 0.047 ml/cm(3) versus 0.017 ml/cm(3), respectively). Testicular artery wall thickness (average 192.5, 229.0, and 290.0 mum, respectively) and arterial-venous blood distance in the TVC (average 330.5, 373.7, and 609.4 pm, respectively) were smallest in B. indicus, intermediary in crossbred, and greatest in B. taurus bulls (P < 0.05); the proximity between arterial and venous blood was consistent with the estimated decrease in arterial blood temperature after passage through the TVC (5.9, 5.0, and 2.9 degreesC, in B. indicus, crossbred, and B. taurus bulls, respectively). In crossbred and B. taurus bulls, there was a positive top-to-bottom scrotal temperature gradient and a negative testicular subtunic temperature gradient. However, in B. indicus bulls, both scrotal and testicular subtunic temperatures gradients were positive. Differences in the vascular arrangement, characteristics of the artery (e.g. wall thickness) or thickness of the tunica albuginea may have affected the testicular arterial blood and subtunic temperatures in B. indicus bulls. Better testicular thermoregulatory capability was associated with increased scrotal shape (pendulosity), testicular artery length and volume, and top-to-bottom gradient of the distance between the artery wall and the veins in the TVC. Increased semen quality was associated with increased testicular volume and scrotal subcutaneous (SQT) temperature gradient, and with decreased scrotal surface and testicular temperatures. Increased sperm production was associated with increased testicular artery volume, testicular volume, and SQT temperature gradient, and with decreased testicular artery wall thickness, scrotal circumference (SC), and scrotal surface, testicular subtunic, and epididymal temperatures. In conclusion, morphology of the TVC may contribute to the greater resistance of B. indicus bulls to high ambient temperatures by conferring a better testicular blood supply and by facilitating heat transfer between the testicular artery and veins. Testicular thermoregulation was associated with opposing scrotal and testicular subtunic temperatures gradients only in crossbred and B. taurus bulls. Scrotal, TVC, and testicular morphology influence testicular thermoregulatory capability and were associated with differences in semen quality and sperm production. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Buffalo ovaries were collected from a slaughterhouse (Frigol, Brazil) and transported to the laboratory in saline solution at 36 degrees C. The ovaries were dissected to realize the evaluations (weight, length, width and height of the ovary; corpus luteum and dominant follicle diameters). The Cumulus-oocyte complexes (COCs) were recovered by aspiration of 2-8 mm follicles. Selected COCs were matured in TCM 199 supplemented with 10% fetal bovine serum, sodium pyruvate, LH, FSH, estradiol and gentamicin. In vitro maturation was carried out at 38.5 degrees C for 22-24 h and 34-36 h. For the evaluation of the nuclear maturation the oocytes were placed in TCM 199 medium added with type v hialuronidase where the granulosa cells were extracted. The denuded oocytes were transferred to 10 mu l of Hoescht 33342 and the chromosomic configuration was evaluated. The oocytes were classified according to meiosis stage in: Germinal Vesicle, Germinal Vesicle Breakdown, Metaphase I, Metaphase II and Degenerated. The means of weight, length, width and height of the ovary were 3.83 g, 2.27 cm, 1.08 cm and 1.56 cm, respectively. The means of corpus luteum and dominant follicle diameters were 1.40 cm and 7.77 mm. The proportion of oocytes that reached metaphase II stage was: 36.68%.
Resumo:
The objective of the present study was to characterize ovogones, primary oocytes and preantral follicles of buffalo fetus in different ages of gestation. For this, 29 fetuses were collected from a slaughterhouse (Frigol, Brazil) and crown-rump lengths were measured to estimate the fetal age (0-3, 4-6, 7-10 months of gestation). The ovaries were removed and ovarian tissue was processed for classic histology and transmission eletron microscopy examination. The structural evaluation demonstrated that in the first period of the gestation (0-3 months) the buffalo fetus showed ovogones (in mitotic division) and in some cases, the primary oocytes surrounded by somatic cells. In the second period (4-6 months), it was verified that the preantral follicles were completely formed. In the last period (70 month to the end of gestation) the ovaries contained a large amount of preantral follicles, and in some fetuses, antral follicles were observed. The ultrastructural analysis of the ovogones, primary oocytes and preantral follicles showed that these cells have few organelles and the quantity of mitochondria, endoplasmatic reticulum and apparatus Golgi complex is increased as the germinative cells passing from one stage to another.
Resumo:
The objectives of the present study were to estimate the population of the normal and degenerated preantral follicles of buffaloes in different reproductive phases and to classify the different types of degeneration of ovarian preantral follicles. For this, 18 ovaries were divided in three groups: prepubertal, non pregnat and pregnant adult females. The ovaries were collected from a slaughterhouse (Frigol - Brazil) and processed for classic histological examination. The follicular population was estimated according to Cahill et al. (1979) and calculated according to Gougeon & Chainy (1987). Young buffaloes, pregnant and non pregnat adults presented an average number of 15.5, 3.7 and 8.9 preantral follicles with normal morphology and type I (the degeneration was observed just in oocyte) and II (oocyte and granulosa cells were degenerated) degeneration, respectively. This experiment demonstrated that the proportions of primordial, primary and secondary follicles were affected by reproductive phase. A significant difference was observed considering the proportions of preantral follicles with normal morphology and Type I degeneration in all reproductive phases evaluated. The primary follicles presented more percentage of Type I degeneration that the others follicles and the primordial and primary follicles presented more percentage of Type II degeneration in three reproductive phases evaluated.
Resumo:
The objectives were to determine the effects of age and genetic group on characteristics of the scrotum, testes and testicular vascular cones (TVC), and on sperm production and semen quality in 107 Bos indicus, B, taurus and cross-bred bulls at three artificial insemination (AI) centers in Brazil. In addition, predictors of sperm production and semen quality were identified. In general, scrotal circumference (SC), scrotal shape score, scrotal neck perimeter, and testicular size (length, width and volume) increased (P < 0.05) with age. Although there were no significant differences among genetic groups for SC or testicular size, B. indicus bulls had the least pendulous scrotal shape, the shortest scrotal neck length, and the greatest scrotal neck perimeter (P < 0.05). Fat covering the TVC was thinner (P < 0.05) in bulls <= 36 months of age and in B. taunts bulls than in older bulls and B. indicus bulls, respectively. Age and genetic group did not affect testicular ultrasonic echotexture. B. indicus bulls tended (P < 0.1) to have the lowest average scrotal surface temperature (SST). In general, ejaculate volume, total number of spermatozoa and number of viable spermatozoa increased (P < 0.05) with age. However, there was no significant effect of age on sperm concentration, motility, major and total defects. The proportion of spermatozoa with minor defects was highest (P < 0.05) in bulls 37-60 months of age. B. indicus bulls had higher (P < 0.01) sperm concentration, total number of spermatozoa and number of viable spermatozoa than B. taunts bulls, with intermediate values for cross-bred bulls. Increased sperm production was associated with increased testicular volume, SC, TVC fat cover, and SST top-to-bottom gradient. Decreased semen quality was associated with increased SC and bottom SST, and decreased scrotal shape, scrotal neck perimeter and vascular cone diameter. In summary, age and genetic group affected the characteristics of the scrotum, testes, and TVC, sperm production and semen quality. In addition, characteristics of the scrotum, testes and TVC were associated with sperm production and semen quality in bulls and could be assessed for breeding soundness evaluation. (c) 2002 Elsevier B.V. All rights reserved.
Resumo:
The effects of ambient temperature and humidity, month, age and genotype on sperm production and semen quality in AI bulls in Brazil were evaluated. Data from two consecutive years were analyzed separately. Seven Bos indicus and 11 Bos taurus bulls from one artificial insemination (AI) center were evaluated in Year 1 and 24 B. indicus and 16 B. taurus bulls from three AI centers were evaluated in Year 2. Ambient temperature and humidity did not significantly affect sperm production and semen quality, probably because there was little variation in these variables. Month accounted for less than 2% of the variation in sperm production and semen quality. Increased bull age was associated with decreased sperm motility (P < 0.10) and increased minor sperm defects (P < 0.001) in Year 1. B. indicus bulls had greater (P < 0.005) sperm concentration than B. taurus bulls in both years (1.7 x 10(9)/ml versus 1.2 x 10(9)/ml in Year 1 and 1.6 x 10(9)/ml versus 1.2 x 10(9)/ml in Year 2, respectively). Ejaculate volume was not significantly affected by genotype in Year 1 (6.6 ml versus 6.9 ml in B. indicus and B. taurus bulls, respectively), but B. indicus bulls had greater (P < 0.05) total (11.4 x 10(9) versus 8.2 x 10(9)) and viable (6.7 x 10(9) versus 4.9 x 10(9)) numbers of spermatozoa in the ejaculate than B. taurus bulls. In Year 2, B. taurus bulls had greater (P < 0.05) ejaculate volume than B. indicus bulls (8.2 ml versus 6.7 ml, respectively) and total and viable number of spermatozoa in the ejaculate were not significantly different between genotypes (10.3 x 10(9) versus 9.1 x 10(9) and 6.1 x 10(9) versus 5.4 x 10(9) in B. indicus and B. taurus bulls, respectively). Sperm motility was not significantly affected by genotype (mean, 59%). In Year 1, B. indicus bulls tended (P < 0.10) to have more major sperm defects and had more (P < 0.05) total sperm defects than B. taurus bulls (11.8% versus 8.7% and 13.6% versus 10.0%, respectively). In Year 2, B. indicus bulls tended (P < 0.10) to have more total sperm defects than B. taurus bulls (16.2% versus 13.3%, respectively). In conclusion, neither ambient temperature and humidity nor month (season) significantly affected sperm production and semen quality. B. indicus bulls had significantly greater sperm concentration and B. taurus bulls had significantly fewer morphologically defective spermatozoa. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objectives of this study were to evaluate the effects of season in southeast of Brazil comparing genotypes on semen characteristics, freezability and peripheral plasma concentrations of testosterone. Ejaculates of five Bos indicus bulls and six Bos taurus bulls were evaluated over a period of 27 months, which was divided into winter (July, August, September), spring (October, November, December), summer (January, February, March) and autumn (April, May, June). Semen was evaluated according to standard procedures for ejaculate volume, sperm concentration, gross-motility, progressive motility and sperm morphology. After preparing and freezing the ejaculates according to commercial procedures, the straws were stored in liquid N(2) until post-thaw evaluation. Ejaculate volume, sperm concentration, gross-motility, progressive sperm motility, vigor and morphological sperm defects were significantly influenced by season and genotype (p < 0.05). Heat tolerance was better in B. indicus bulls than in B. taurus bulls characterized by lower values of sperm abnormalities throughout the observation period. The highest values were recorded for abnormal heads followed by cytoplasmatic droplets in B. taurus bulls. The proportion of ejaculates which were eliminated before freezing for reasons of bad quality was lower in the B. indicus bulls. Temporal changes in peripheral plasma testosterone concentrations were higher in B. indicus bulls than in B. taurus bulls not revealing seasonal influences. The results of this study show clear genotype differences regarding semen quality. Freezability of B. taurus semen varies considerably throughout the year, leading to a high proportion of eliminated ejaculates. Collecting semen from B. taurus bulls during the summer in an artificial insemination centre may not be profitable.
Resumo:
Ten type I loci from HSA 10 (IL2RA and VIM), HSA11 (HBB and FSHB) and HSA20 (THBD, AVP/OXT, GNAS1, HCK and TOP1) and two domestic cattle type II loci (CSSM30 and BL42) were FISH mapped to R-banded river buffalo (BBU) and sheep (OAR) chromosomes. IL2RA (HSA 10) maps on BBU 14q13 and OAR13q13, VIM (HSA 10) maps on BBU14q15 and OAR13q15, HBB (HSA11) maps on BBU16q25 and OAR15q23, FSHB (HSA11) maps on BBU16q28 and OAR15q26. THBD (HSA20) maps on BBU 14q15 and OAR13q15 while AVP/OXT. GNAS1, HCK, and TOP I (HSA20) as well as CSSM30 and BL42 map on the same large band of BBU 14q22 and OAR13q22. All loci were mapped on the same homologous chromosomes and chromosome bands of the two species, and these results agree with those earlier reported in cattle homologous chromosomes 15 and 13. respectively, confirming the high degree of both banding and physical map similarities among the bovid species. Indirect comparisons between physical maps achieved on bovid chromosomes and those reported on HSA10, HSA11 and HSA20 were performed. Copyright (C) 2001 S. Karger AG, Basel.