736 resultados para bubble
Resumo:
Sequence-selective transcription by bacterial RNA polymerase (RNAP) requires σ factor that participates in both promoter recognition and DNA melting. RNAP lacking σ (core enzyme) will initiate RNA synthesis from duplex ends, nicks, gaps, and single-stranded regions. We have used DNA templates containing short regions of heteroduplex (bubbles) to compare initiation in the presence and absence of various σ factors. Using bubble templates containing the σD-dependent flagellin promoter, with or without its associated upstream promoter (UP) element, we demonstrate that UP element stimulation occurs efficiently even in the absence of σ. This supports a model in which the UP element acts primarily through the α subunit of core enzyme to increase the initial association of RNAP with the promoter. Core and holoenzyme do differ substantially in the template positions chosen for initiation: σD restricts initiation to sites 8–9 nucleotides downstream of the conserved −10 element. Remarkably, σA also has a dramatic effect on start-site selection even though the σA holoenzyme is inactive on the corresponding homoduplexes. The start sites chosen by the σA holoenzyme are located 8 nucleotides downstream of sequences on the nontemplate strand that resemble the conserved −10 hexamer recognized by σA. Thus, σA appears to recognize the −10 region even in a single-stranded state. We propose that in addition to its described roles in promoter recognition and start-site melting, σ also localizes the transcription start site.
Resumo:
We consider the simplest relevant problem in the foaming of molten plastics, the growth of a single bubble in a sea of highly viscous Newtonian fluid, and without interference from other bubbles. This simplest problem has defied accurate solution from first principles. Despite plenty of research on foaming, classical approaches from first principles have neglected the temperature rise in the surrounding fluid, and we find that this oversimplification greatly accelerates bubble growth prediction. We use a transport phenomena approach to analyze the growth of a solitary bubble, expanding under its own pressure. We consider a bubble of ideal gas growing without the accelerating contribution from mass transfer into the bubble. We explore the roles of viscous forces, fluid inertia, and viscous dissipation. We find that bubble growth depends upon the nucleus radius and nucleus pressure. We begin with a detailed examination of the classical approaches (thermodynamics without viscous heating). Our failure to fit experimental data with these classical approaches, sets up the second part of our paper, a novel exploration of the essential decelerating role of viscous heating. We explore both isothermal and adiabatic bubble expansion, and also the decelerating role of surface tension. The adiabatic analysis accounts for the slight deceleration due to the cooling of the expanding gas, which depends on gas polyatomicity. We also explore the pressure profile, and the components of the extra stress tensor, in the fluid surrounding the growing bubble. These stresses can eventually be frozen into foamed plastics. We find that our new theory compares well with measured bubble behavior.
Resumo:
Typical size of bubbles obtained from cavitation inception pressure measured in the surface layer of the Atlantic Ocean in situ aboard R/V Professor Vize in 1971 and Nerey in 1973 are reported. These results do not contradict ones of bubble size measurements using optical or acoustical techniques. Variability of bubble size is discovered and described. This variability is related to passing from one geographical region to another (from 68°55'S to 61°52'N), to changes in depth (from 5 to 100 m) and in day time, as well as to spatial fluctuations within an aquatic area. It is suggested that, in addition to wave breaking, there is another source of bubbles at depth 10-20 m that associates with hydrobiological processes.
Resumo:
Cover title.
Resumo:
Thesis--Illinois.
Resumo:
"This work was supported in part by the Atomic Energy Commission under contract No. AT(11-1)-1018."
Resumo:
"This work was supported in part by the Atomic Energy Commission under Contract No. AT(11-1)-1018"
Resumo:
"July 1998."
Resumo:
"ORINS-40; Particle accelerators and high-voltage machines."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Hieronymus Bosch; grisaille, oil on wood