991 resultados para box-counting method
Resumo:
Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.
Resumo:
We present 30 new planktonic foraminiferal census data of surface sediment samples from the South China Sea, recovered between 630 and 2883 m water depth. These new data, together with the 131 earlier published data sets from the western Pacific, are used for calibrating the SIMMAX-28 transfer function to estimate past sea-surface temperatures. This regional SIMMAX method offers a slightly better understanding of the marginal sea conditions of the South China Sea than the linear transfer function FP-12E, which is based only on open-ocean data. However, both methods are biased toward the tropical temperature regime because of the very limited data from temperate to subpolar regions. The SIMMAX formula was applied to sediment core 17940 from the northeastern South China Sea, with sedimentation rates of 20-80 cm/ka. Results revealed nearly unchanged summer temperatures around 28°C for the last 30 ky, while winter temperatures varied between 19.5°C in the last glacial maximum and 26°C during the Holocene. During Termination 1A, the winter estimates show a Younger Dryas cooling by 3°C subsequent to a temperature optimum of 24°C during the Bölling=Alleröd. Estimates of winter temperature differences between 0 and 100 m water depth document the seasonal variations in the thickness of the mixed layer and provide a new proxy for estimating past changes in the strength of the winter monsoon.
Resumo:
In this study we investigate the potential of organic-walled dinoflagellate cysts (dinocysts) as tools for quantifying past sea-surface temperatures (SST) in the Southern Ocean. For this purpose, a dinocyst reference dataset has been formed, based on 138 surface sediment samples from different circum-Antarctic environments. The dinocyst assemblages of these samples are composed of phototrophic (gonyaulacoid) and heterotrophic (protoperidinioid) species that provide a broad spectrum of palaeoenvironmental information. The relationship between the environmental parameters in the upper water column and the dinocyst distribution patterns of individual species has been established using the statistical method of Canonical Correspondence Analysis (CCA). Among the variables tested, summer SST appeared to correspond to the maximum variance represented in the dataset. To establish quantitative summer SST reconstructions, a Modern Analogue Technique (MAT) has been performed on data from three Late Quaternary dinocyst records recovered from locations adjacent to prominent oceanic fronts in the Atlantic sector of the Southern Ocean. These dinocyst time series exhibit periodic changes in the dinocyst assemblage during the last two glacial/interglacial-cycles. During glacial conditions the relative abundance of protoperidinioid cysts was highest, whereas interglacial conditions are characterised by generally lower cyst concentrations and increased relative abundance of gonyaulacoid cysts. The MAT palaeotemperature estimates show trends in summer SST changes following the global oxygen isotope signal and a strong correlation with past temperatures of the last 140,000 years based on other proxies. However, by comparing the dinocyst results to quantitative estimates of summer SSTs based on diatoms, radiolarians and foraminifer-derived stable isotope records it can be shown that in several core intervals the dinocyst-based summer SSTs appeared to be extremely high. In these intervals the dinocyst record seems to be highly influenced by selective degradation, leading to unusual temperature ranges and to unrealistic palaeotemperatures. We used the selective degradation index (kt-index) to determine those intervals that have been biased by selective degradation in order to correct the palaeotemperature estimates. We show that after correction the dinocyst based SSTs correspond reasonably well with other palaeotemperature estimates for this region, supporting the great potential of dinoflagellate cysts as a basis for quantitative palaeoenvironmental studies.
Resumo:
[1] We used planktic foraminiferal assemblages in 70 sediment cores from the tropical and subtropical South Atlantic Ocean (10°N-37°S) to estimate annual mean sea surface temperatures (SSTs) and seasonality for the Last Glacial Maximum with a modified version of the Imbrie-Kipp transfer function method (IKTF) that takes into account the abundance of rare but temperature sensitive species. In contrast to CLIMAP Project Members [1981], the reconstructed SSTs indicate cooler glacial SSTs in the entire tropical/subtropical South Atlantic with strongest cooling in the upwelling region off Namibia (7-10°C) and smallest cooling (1-2°C) in the western subtropical gyre. In the western Atlantic, our data support recent temperature estimates from other proxies. In the upwelling regions in the eastern Atlantic, our data conflict with SST reconstructions from alkenones, which may be due to an environmental preference of the alkenone-producing algae or to an underestimation of foraminiferal SSTs due to anomalous high abundances of N. pachyderma (sinistral).
Resumo:
Based on the quantitative analysis of diatom assemblages preserved in 274 surface sediment samples recovered in the Pacific, Atlantic and western Indian sectors of the Southern Ocean we have defined a new reference database for quantitative estimation of late-middle Pleistocene Antarctic sea ice fields using the transfer function technique. The Detrended Canonical Analysis (DCA) of the diatom data set points to a unimodal distribution of the diatom assemblages. Canonical Correspondence Analysis (CCA) indicates that winter sea ice (WSI) but also summer sea surface temperature (SSST) represent the most prominent environmental variables that control the spatial species distribution. To test the applicability of transfer functions for sea ice reconstruction in terms of concentration and occurrence probability we applied four different methods, the Imbrie and Kipp Method (IKM), the Modern Analog Technique (MAT), Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WAPLS), using logarithm-transformed diatom data and satellite-derived (1981-2010) sea ice data as a reference. The best performance for IKM results was obtained using a subset of 172 samples with 28 diatom taxa/taxa groups, quadratic regression and a three-factor model (IKM-D172/28/3q) resulting in root mean square errors of prediction (RMSEP) of 7.27% and 11.4% for WSI and summer sea ice (SSI) concentration, respectively. MAT estimates were calculated with different numbers of analogs (4, 6) using a 274-sample/28-taxa reference data set (MAT-D274/28/4an, -6an) resulting in RMSEP's ranging from 5.52% (4an) to 5.91% (6an) for WSI as well as 8.93% (4an) to 9.05% (6an) for SSI. WA and WAPLS performed less well with the D274 data set, compared to MAT, achieving WSI concentration RMSEP's of 9.91% with WA and 11.29% with WAPLS, recommending the use of IKM and MAT. The application of IKM and MAT to surface sediment data revealed strong relations to the satellite-derived winter and summer sea ice field. Sea ice reconstructions performed on an Atlantic- and a Pacific Southern Ocean sediment core, both documenting sea ice variability over the past 150,000 years (MIS 1 - MIS 6), resulted in similar glacial/interglacial trends of IKM and MAT-based sea-ice estimates. On the average, however, IKM estimates display smaller WSI and slightly higher SSI concentration and probability at lower variability in comparison with MAT. This pattern is a result of different estimation techniques with integration of WSI and SSI signals in one single factor assemblage by applying IKM and selecting specific single samples, thus keeping close to the original diatom database and included variability, by MAT. In contrast to the estimation of WSI, reconstructions of past SSI variability remains weaker. Combined with diatom-based estimates, the abundance and flux pattern of biogenic opal represents an additional indication for the WSI and SSI extent.
Resumo:
A rapid procedure for Io (Th230) dating of sediments with accumulation rates in the range of several cm/1000 years is described. Studying of large sample populations with very small Io-excess activity is possible as the counting time (around 1500 min/sample) are 2 to 5 times shorter than with the standard Io-excess method. Improved sensitivity of the Io-excess measurement is achieved by: 1) extraction ( ~90 %) of the authigenic Io-excess with EDTA, with minor leaching ( ~30 %) of the allogenic Th232 and Io-supported, 2) processing samples as large as 10 g or more. The procedure was applied to sediments from the Caribbean (V 12-122) and from the Ionian Sea (M22_48 and M17_17). In the case of the standard core V 12-122 our results are in good agreement with previous time-consuming Io determinations. The resulting average accumulation rates of 2.0 ± 0.3 cm/1000 years for the Ionian Sea cores are close to the average derived from magnetic reversal studies of a nearby core.
Resumo:
The work presented in this thesis is concerned with the dynamical behavior of a CBandola's acoustical box at low resonances -- Two models consisting of two and three coupled oscillators are proposed in order to analyse the response at the first two and three resonances, respectively -- These models describe the first resonances in a bandola as a combination of the lowest modes of vibration of enclosed air, top and back plates -- Physically, the coupling between these elements is caused by the fluid-structure interaction that gives rise to coupled modes of vibration for the assembled resonance box -- In this sense, the coupling in the models is expressed in terms of the ratio of effective areas and masses of the elements which is an useful parameter to control the coupling -- Numerical models are developed for the analysis of modal coupling which is performed using the Finite Element Method -- First, it is analysed the modal behavior of separate elements: enclosed air, top plate and back plate -- This step is important to identify participating modes in the coupling -- Then, a numerical model of the resonance box is used to compute the coupled modes -- The computation of normal modes of vibration was executed in the frequency range of 0-800Hz -- Although the introduced models of coupled oscillators only predict maximum the first three resonances, they also allow to study qualitatively the coupling between the rest of the computed modes in the range -- Considering that dynamic response of a structure can be described in terms of the modal parameters, this work represents, in a good approach, the basic behavior of a CBandola, although experimental measurements are suggested as further work to verify the obtained results and get more information about some characteristics of the coupled modes, for instance, the phase of vibration of the air mode and the radiation e ciency
Resumo:
Hydroxyl radical (OH) is the primary oxidant in the troposphere, initiating the removal of numerous atmospheric species including greenhouse gases, pollutants that are detrimental to human health, and ozone-depleting substances. Because of the complexity of OH chemistry, models vary widely in their OH chemistry schemes and resulting methane (CH4) lifetimes. The current state of knowledge concerning global OH abundances is often contradictory. This body of work encompasses three projects that investigate tropospheric OH from a modeling perspective, with the goal of improving the tropospheric community’s knowledge of the atmospheric lifetime of CH4. First, measurements taken during the airborne CONvective TRansport of Active Species in the Tropics (CONTRAST) field campaign are used to evaluate OH in global models. A box model constrained to measured variables is utilized to infer concentrations of OH along the flight track. Results are used to evaluate global model performance, suggest against the existence of a proposed “OH Hole” in the tropical Western Pacific, and investigate implications of high O3/low H2O filaments on chemical transport to the stratosphere. While methyl chloroform-based estimates of global mean OH suggest that models are overestimating OH, we report evidence that these models are actually underestimating OH in the tropical Western Pacific. The second project examines OH within global models to diagnose differences in CH4 lifetime. I developed an approach to quantify the roles of OH precursor field differences (O3, H2O, CO, NOx, etc.) using a neural network method. This technique enables us to approximate the change in CH4 lifetime resulting from variations in individual precursor fields. The dominant factors driving CH4 lifetime differences between models are O3, CO, and J(O3-O1D). My third project evaluates the effect of climate change on global fields of OH using an empirical model. Observations of H2O and O3 from satellite instruments are combined with a simulation of tropical expansion to derive changes in global mean OH over the past 25 years. We find that increasing H2O and increasing width of the tropics tend to increase global mean OH, countering the increasing CH4 sink and resulting in well-buffered global tropospheric OH concentrations.
Resumo:
Rainflow counting methods convert a complex load time history into a set of load reversals for use in fatigue damage modeling. Rainflow counting methods were originally developed to assess fatigue damage associated with mechanical cycling where creep of the material under load was not considered to be a significant contributor to failure. However, creep is a significant factor in some cyclic loading cases such as solder interconnects under temperature cycling. In this case, fatigue life models require the dwell time to account for stress relaxation and creep. This study develops a new version of the multi-parameter rainflow counting algorithm that provides a range-based dwell time estimation for use with time-dependent fatigue damage models. To show the applicability, the method is used to calculate the life of solder joints under a complex thermal cycling regime and is verified by experimental testing. An additional algorithm is developed in this study to provide data reduction in the results of the rainflow counting. This algorithm uses a damage model and a statistical test to determine which of the resultant cycles are statistically insignificant to a given confidence level. This makes the resulting data file to be smaller, and for a simplified load history to be reconstructed.
Resumo:
Purpose: To develop and optimise some variables that influence fluoxetine orally disintegrating tablets (ODTs) formulation. Methods: Fluoxetine ODTs tablets were prepared using direct compression method. Three-factor, 3- level Box-Behnken design was used to optimize and develop fluoxetine ODT formulation. The design suggested 15 formulations of different lubricant concentration (X1), lubricant mixing time (X2), and compression force (X3) and then their effect was monitored on tablet weight (Y1), thickness (Y2), hardness (Y3), % friability (Y4), and disintegration time (Y5). Results: All powder blends showed acceptable flow properties, ranging from good to excellent. The disintegration time (Y5) was affected directly by lubricant concentration (X1). Lubricant mixing time (X2) had a direct effect on tablet thickness (Y2) and hardness (Y3), while compression force (X3) had a direct impact on tablet hardness (Y3), % friability (Y4) and disintegration time (Y5). Accordingly, Box-Behnken design suggested an optimized formula of 0.86 mg (X1), 15.3 min (X2), and 10.6 KN (X3). Finally, the prediction error percentage responses of Y1, Y2, Y3, Y4, and Y5 were 0.31, 0.52, 2.13, 3.92 and 3.75 %, respectively. Formula 4 and 8 achieved 90 % of drug release within the first 5 min of dissolution test. Conclusion: Fluoxetine ODT formulation has been developed and optimized successfully using Box- Behnken design and has also been manufactured efficiently using direct compression technique.
Resumo:
AIMS: In the UK, people tend to have poor knowledge of government guidelines for alcohol use, and lack the motivation and skills required to use them to monitor their drinking. The study aim was to determine whether using glasses marked with such guidelines would improve knowledge and attitudes, increase frequency of counting units and lower alcohol intake. METHODS: A total of 450 adults in the UK participated in an intervention vs control study with 1-month follow-up. The intervention group was encouraged to use glasses supplied by the researchers that indicated the unit content of drinks of different strengths and volumes, and stated the intake guidelines. Data were collected online. A further more in-depth interview with 13 intervention group participants enquired into their experiences of using the glasses. RESULTS: Analyses adjusted for baseline variables showed that the intervention improved the following: knowledge of unit-based guidelines, ability to estimate the unit content of drinks, attitudes toward the guidelines and frequency of counting unit intake. However, there was no significant difference in alcohol consumption between the groups at follow-up. Interviews suggested that the glasses encouraged people to think about their drinking and to discuss alcohol with other people. The design of the glasses was not appealing to all, and their initial impact did not always persist. CONCLUSION: Use of unit-marked glasses led to changes in people's reported use of unit-based guidelines to monitor their drinking but, in the short term, no change in consumption. Qualitative data suggested that the glasses could have an impact at the individual level (on knowledge and attitudes) and at a broader level (by prompting discussion of alcohol use).
Resumo:
Proliferation of microglial cells has been considered a sign of glial activation and a hallmark of ongoing neurodegenerative diseases. Microglia activation is analyzed in animal models of different eye diseases. Numerous retinal samples are required for each of these studies to obtain relevant data of statistical significance. Because manual quantification of microglial cells is time consuming, the aim of this study was develop an algorithm for automatic identification of retinal microglia. Two groups of adult male Swiss mice were used: age-matched controls (naïve, n = 6) and mice subjected to unilateral laser-induced ocular hypertension (lasered; n = 9). In the latter group, both hypertensive eyes and contralateral untreated retinas were analyzed. Retinal whole mounts were immunostained with anti Iba-1 for detecting microglial cell populations. A new algorithm was developed in MATLAB for microglial quantification; it enabled the quantification of microglial cells in the inner and outer plexiform layers and evaluates the area of the retina occupied by Iba-1+ microglia in the nerve fiber-ganglion cell layer. The automatic method was applied to a set of 6,000 images. To validate the algorithm, mouse retinas were evaluated both manually and computationally; the program correctly assessed the number of cells (Pearson correlation R = 0.94 and R = 0.98 for the inner and outer plexiform layers respectively). Statistically significant differences in glial cell number were found between naïve, lasered eyes and contralateral eyes (P<0.05, naïve versus contralateral eyes; P<0.001, naïve versus lasered eyes and contralateral versus lasered eyes). The algorithm developed is a reliable and fast tool that can evaluate the number of microglial cells in naïve mouse retinas and in retinas exhibiting proliferation. The implementation of this new automatic method can enable faster quantification of microglial cells in retinal pathologies.
Resumo:
Freshness is the main concern of seafood quality, and the principal method to evaluate seafood freshness is sensory evaluation. The aim of this work was to study the quality changes of cobia, Rachycentron canadum, under ice storage through sensory and physical analysis as well as bacterial counting of specific spoilage organisms (SSOs). In particular, the utilization of a quality index method (QIM) scheme was proposed. Samples stored for 0-30 d were analyzed with the QIM.
Resumo:
This thesis focuses on automating the time-consuming task of manually counting activated neurons in fluorescent microscopy images, which is used to study the mechanisms underlying torpor. The traditional method of manual annotation can introduce bias and delay the outcome of experiments, so the author investigates a deep-learning-based procedure to automatize this task. The author explores two of the main convolutional-neural-network (CNNs) state-of-the-art architectures: UNet and ResUnet family model, and uses a counting-by-segmentation strategy to provide a justification of the objects considered during the counting process. The author also explores a weakly-supervised learning strategy that exploits only dot annotations. The author quantifies the advantages in terms of data reduction and counting performance boost obtainable with a transfer-learning approach and, specifically, a fine-tuning procedure. The author released the dataset used for the supervised use case and all the pre-training models, and designed a web application to share both the counting process pipeline developed in this work and the models pre-trained on the dataset analyzed in this work.