896 resultados para bone density distribution
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: In view of reports in the literature on the benefits achieved with the use of platform switching, described as the use of an implant with a larger diameter than the abutment diameter, the goal being to prevent the (previously) normal bone loss down to the first thread that occurs around most implants, thus enhancing soft tissue aesthetics and stability and the need for implant inclination due to bone anatomy in some cases, the aim of this study was to evaluate bone stress distribution on peri-implant bone, by using three-dimensional finite element analysis to simulate the influence of implants with different abutment angulations (0 and 15 degrees) in platform switching. METHODS: Four mathematical models of an implant-supported central incisor were created with varying abutment angulations: straight abutment (S1 and S2) and angulated abutment at 15 degrees (A1 and A2), submitted to 2 loading conditions (100 N): S1 and A1-oblique loading (45 degrees) and S2 and A2-axial loading, parallel to the long axis of the implant. Maximum (σmax) and minimum (σmin) principal stress values were obtained for cortical and trabecular bone. RESULTS: Models S1 and A1 showed higher σmax in cortical and trabecular bone when compared with S2 and A2. The highest σmax values (in MPa) in the cortical bone were found in S1 (28.5), followed by A1 (25.7), S2 (11.6), and A2 (5.15). For the trabecular bone, the highest σmax values were found in S1 (7.53), followed by A1 (2.87), S2 (2.85), and A2 (1.47). CONCLUSIONS: Implants with straight abutments generated the highest stress values in bone. In addition, this effect was potentiated when the load was applied obliquely.
Resumo:
Objectives The objective of this study was to develop a technique for detecting cortical bone dimensional changes in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ). Study Design Subjects with BRONJ who had cone-beam computed tomography imaging were selected, with age- and gender-matched controls. Mandibular cortical bone measurements to detect bisphosphonate-related cortical bone changes were made inferior to mental foramen, in 3 different ways: within a fixed sized rectangle, in a rectangle varying with the cortical height, and a ratio between area and height. Results Twelve BRONJ cases and 66 controls were evaluated. The cortical bone measurements were significantly higher in cases than controls for all 3 techniques. The bone measurements were strongly associated with BRONJ case status (odds ratio 3.36-7.84). The inter-rater reliability coefficients were high for all techniques (0.71-0.90). Conclusions Mandibular cortical bone measurement is a potentially useful tool in the detection of bone dimensional changes caused by bisphosphonates. Long-term administration of bisphosphonates (BPs) affects bone quality and metabolism following accumulation in bone.1 Since the first cases of bisphosphonate-related osteonecrosis of the jaw (BRONJ) were published in 2003,2 there has been a search for factors that can predict the onset of the condition. Oral and intravenous BPs reduce bone resorption, increase mineral content of bone, and alter bony architecture.3, 4, 5 and 6 Previous studies have demonstrated these changes both radiographically and following histologic analysis.1, 3, 7, 8, 9 and 10 The BP-related jaw changes may present radiological features, such as thickening of lamina dura and cortical borders, diffuse sclerosis, and narrowing of the mandibular canal3 and 11; however, oral radiographs of patients taking BPs do not consistently show radiographic changes to the jaws.11 and 12 The challenge is to find imaging tools that could improve the detection of changes in the bone associated with BP use. Various skeletal radiographic features associated with BRONJ in conventional periapical and panoramic radiographs, computed tomography, magnetic resonance imaging, and nuclear bone scanning have been described.3, 8, 9, 10 and 11 There has also been a search for BP-related quantitative methods for the evaluation of radiographic images, to avoid observer subjectivity in interpretation. Factors thought to be important include trabecular and cortical structure, and bone mineralization.4 Consequently, measurable bone data have been reported in subjects taking BPs through many techniques, including bone density, architecture, and cortical bone thickness.1, 4, 7 and 13 Trabecular microarchitecture of postmenopausal women has been evaluated with noninvasive techniques, such as high-resolution magnetic resonance images showing less deterioration of the bone 1 year after initiation of oral BP therapy.4 A decrease in bone turnover and a trend for an increase in the bone wall thickness has been detected by histomorphometry in subjects taking BPs.1 Alterations in the cortical structure of the second metacarpal have been detected in digital x-ray radiogrammetry of postmenopausal women treated with BPs.7 Mandibular cortical width may be measured on dental panoramic radiographs, and it has been suggested as a screening tool for referring patients for bone densitometry for osteoporosis investigation.14 and 15 Inhibition of the intracortical bone remodeling in the mandible of mice taking BPs has been reported.16 Thus, imaging evaluation of the mandibular cortical bone could be a biologically plausible way to detect BP bone alterations. Computed tomography can assess both cortical and trabecular bone characteristics. Cone-beam computed tomography (CBCT) can provide 3-dimensional information, while using lower doses and costing less than conventional CT. The CBCT images have been studied as a tool for the measurement of trabecular bone in patients with BRONJ.13 Therefore, cortical bone measurements on CBCT of the jaws might also help to understand bone changes in patients with BRONJ. There is no standard in quantifying dimensional changes of mandibular cortical bone. We explored several different approaches to take into consideration possible changes in length, area, and volume. These led to the 3 techniques developed in this study. This article reports a matched case-control study in which mandibular cortical bone was measured on CBCT images of subjects with BRONJ and controls. The aim of the study was to explore the usefulness of 3 techniques for detecting mandibular cortical bone dimensional changes caused by BP.
Resumo:
Characterizing vegetation composition, carbon/nitrogen (C/N) content of soils, and root-mass distribution is critical to understanding carbon sequestration potential of subirrigated meadows in the Nebraska Sandhills. Five subirrigated meadows dominated by cool-season (C3) graminoids and five meadows dominated by warm-season (C4) grasses were selected throughout the Nebraska Sandhills. Vegetation, soil carbon and nitrogen, and root-mass density distribution were sampled in each meadow. Meadows dominated by C3 vegetation had 12% greater (P < 0.1) yields than meadows dominated by C4 vegetation. Total root-mass density was 30% greater (P < 0.1) in C4-dominated meadows than C3-dominated meadows. Total carbon and nitrogen content was 65% and 53% greater (P < 0.1), respectively, in the A horizon of C3-dominated meadows, but was 43% and 52% greater (P < 0.1), respectively, in the C horizon of C4-dominated meadows. Although meadows dominated by C3 vegetation had more carbon in the soil profile, much of the carbon in C3-dominated meadows appeared to be recalcitrant C4 carbon from historic vegetation.
Resumo:
Introduction: In this study, we evaluated the effects of a low-level laser on bone regeneration in rapid maxillary expansion procedures. Methods: Twenty-seven children, aged 8 to 12 years, took part in the experiment, with a mean age of 10.2 years, divided into 2 groups: the laser group (n=14), in which rapid maxillary expansion was performed in conjunction with laser use, and the no-laser group (n=13), with rapid maxillary expansion only. The activation protocol of the expansion screw was 1 full turn on the first day and a half turn daily until achieving overcorrection. The laser type used was a laser diode (TWIN Laser; MMOptics, Sao Carlos, Brazil), according to the following protocol: 780 nm wavelength, 40 mW power, and 10 J/cm(2) density at 10 points located around the midpalatal suture. The application stages were 1 (days 1-5 of activation), 2 (at screw locking, on 3 consecutive days), 3, 4, and 5 (7, 14, and 21 days after stage 2). Occlusal radiographs of the maxilla were taken with the aid of an aluminum scale ruler as a densitometry reference at different times: T1 (initial), T2 (day of locking), T3 (3-5 days after T2), T4 (30 days after T3), and T5 (60 days after T4). The radiographs were digitized and submitted to imaging software (Image Tool; UTHSCSA, San Antonio, Tex) to measure the optic density of the previously selected areas. To perform the statistical test, analysis of covariance was used, with the time for the evaluated stage as the covariable. In all tests, a significance level of 5% (P<0.05) was adopted. Results: From the evaluation of bone density, the results showed that the laser improved the opening of the midpalatal suture and accelerated the bone regeneration process. Conclusions: The low-level laser, associated with rapid maxillary expansion, provided efficient opening of the midpalatal suture and influenced the bone regeneration process of the suture, accelerating healing. (Am J Orthod Dentofacial Orthop 2012;141:444-50)
Human Bone Morphogenetic Protein-2 Use for Maxillary Reconstruction in Cleft Lip and Palate Patients
Resumo:
Background: The conventional methods of maxillary alveolar reconstruction in patient with cleft are the periosteoplasty and autologous bone grafting. As an important alternative of bone substitution, there is the recombinant human bone morphogenetic protein-2 (rhBMP-2). This study compares the rhBMP-2 with periosteoplasty and autologous bone grafting. Methods: Patients with cleft and alveolar defect were divided into 3 groups of 6 patients who underwent to autologous iliac crest bone grafting, resorbable collagen sponge with rhBMP2, and periosteoplasty, respectively. The analysis was performed through computed tomographic scan preoperatively and at months 3, 6, and 12 postoperatively. The variables analyzed were the alveolar defect volume, formed bone volume, bone formation rate, maxillary height repair rate, and the formed bone density mean. Results: The formed bone volume was similar comparing the bone graft and BMP groups at 1-year postoperative analysis (P = 0.58). Both of them had the formed bone volume significantly larger than the periosteoplasty group at 3 and 6 months postoperatively. In this last group, the 1-year follow-up was canceled because the bone formation was insufficient. The bone formation rate, the maxillary height repair rate, and the mean of density of the formed bone were similar in the bone graft and BMP groups at 1-year follow-up with P values of 0.93, 0.90, and 0.81, respectively. Conclusions: The amount of formed bone in the periosteoplasty group was insufficient. There was no difference among the bone graft and rhBMP-2 therapy considering the parameters analyzed.
Resumo:
Osteoporotic hip fractures (OHF) are not limited to elderly; however, studies in non-elderly are scarce. Thus, the aim of this study was to evaluate co-morbidities in non-elderly patients with OHF in a Community Teaching Hospital. All hospitalizations due to OHF during a 3-year period in a Community Teaching Hospital were retrospectively evaluated for co-morbidities, and patients 18-64 years old were compared with those a parts per thousand yen65 years old. Of all hospitalizations, 232 (0.73%) were due to hip fractures, and 120/232 (51.7%) patients had OHF. The comparison of the 13 (10.8%) OHF patients < 65 years old (47.3 +/- A 9.7 years) with 107 (89.2%) a parts per thousand yen65 years old (80.4 +/- A 7.7 years) revealed a male predominance (61.5 vs. 27.1%, P = 0.022) and a distinct ethnic distribution with a lower proportion of Caucasians in the former (61.5 vs. 86.9%, P = 0.033). Moreover, non-elderly OHF patients had higher frequencies of insulin-dependent DM (38.5 vs. 3.7%, P = 0.001) and alcoholism (38.5 vs. 4.7%, P = 0.001) than aged patients. In contrast, rates of age-related co-morbidities such as stroke (7.7 vs. 18.7%, P = 0.461), heart failure (23.1 vs. 14.0%, P = 0.411), and dementia (7.7 vs. 15.9%, P = 0.689) were comparable in both groups. Logistic regression analysis demonstrated that insulin-dependent DM (OR = 25.4, 95% CI = 4.7-136.8, P < 0.001) and alcoholism (OR = 20.3, 95% CI = 3.9-103.3, P < 0.001) remained as independent risk factors for OHF in non-elderly patients. Osteoporosis is an important cause of HF in Community Hospital. Non-elderly patients with OHF have a peculiar demographic profile and associated co-morbidities. These findings reinforce the need of early osteoporosis diagnosis and rigorous fracture prevention in patients with DM and alcoholism.
Resumo:
Background: Homeopathy is based on treatment by similitude ('like cures like') administering to sick individuals substances that cause similar symptoms in healthy individuals, employing the secondary and paradoxical action of the organism as therapeutic response. This vital or homeostatic reaction of the organism can be scientifically explained by the rebound effect of drugs, resulting in worsening of symptoms after suspension of treatment. Bisphosphonates (BPs) reduce 'typical' fractures in patients with osteoporosis, but recent studies report 'atypical' fractures of the femur after stopping the BPs, a rebound effect may be the causal mechanism. Method: Review of the literature concerning the relationship between atypical femoral fractures and antiresorptive drugs (bisphosphonates), identifying the pathogenesis of this adverse event. Results: Several studies have described multiple cases of 'atypical' low-impact subtrochanteric stress fractures or complete fractures of the femur. These fractures are often bilateral, preceded by pain in the affected thigh, may have a typical X-ray appearance, and may delayed healing. Rebound of osteoclastic activity after suspension of antiresorptive drugs is a plausible mechanism to explain this phenomenon. Conclusion: As for other classes of drugs, the rebound effect of antiresorptive drugs supports Hahnemann's similitude principle (primary action of the drugs followed by secondary and opposite action of the organism), and clarifies this 'unresolved' issue. Unfortunately, the rebound effect is little discussed among health professionals, depriving them of important knowledge ensure safe management of drugs. Homeopathy (2012) 101, 231-242.
Resumo:
This study evaluated bone responses to titanium implants in the presence of an inorganic graft material. The bilateral mandible incisors of 24 rabbits were surgically extracted and one of the exposed sockets, chosen at random, was filled with an inorganic xenogenic bone graft (Gen-ox (R)), whereas the remaining socket was left to heal naturally and served as a control. After 60 days, titanium implants were inserted in the specific areas, and on days 0, 30, 60, and 180 after the implant insertions, six animals of each group were killed. Digital periapical radiography of implant region was obtained and vertical bone height (VBH) and bone density (BD) were evaluated by digital analysis system. In the undecalcified tissue cuts, bone-to-implant contact (BIC) and bone area (BA) within the limits of the implant threads were evaluated and compared statistically by means of two-way ANOVA and Tukey's test (rho < 0.05). No significant differences were detected in VBH and BA, either between groups or between different experimental intervals. The BD was significantly higher in the experimental group than in the control group in all the intervals tested, but there were no significant differences by interval. The BIC was statistically lower in the control group on day 0; however, a significant increase was observed on days 60 and 180 (rho < 0.05). The use of an inorganic xenograft prior to insertion of a titanium implant did not interfere with the course of osseointegration.
Resumo:
This thesis is a part of a larger study about the characterization of mechanical and histomorphometrical properties of bone. The main objects of this study were the bone tissue properties and its resistance to mechanical loads. Moreover, the knowledge about the equipment selected to carry out the analyses, the micro-computed tomography (micro-CT), was improved. Particular attention was given to the reliability over time of the measuring instrument. In order to understand the main characteristics of bone mechanical properties a study of the skeletal, the bones of which it is composed and biological principles that drive their formation and remodelling, was necessary. This study has led to the definition of two macro-classes describing the main components responsible for the resistance to fracture of bone: quantity and quality of bone. The study of bone quantity is the current clinical standard measure for so-called bone densitometry, and research studies have amply demonstrated that the amount of tissue is correlated with its mechanical properties of elasticity and fracture. However, the models presented in the literature, including information on the mere quantity of tissue, have often been limited in describing the mechanical behaviour. Recent investigations have underlined that also the bone-structure and the tissue-mineralization play an important role in the mechanical characterization of bone tissue. For this reason in this thesis the class defined as bone quality was mainly studied, splitting it into two sub-classes of bone structure and tissue quality. A study on bone structure was designed to identify which structural parameters, among the several presented in the literature, could be integrated with the information about quantity, in order to better describe the mechanical properties of bone. In this way, it was also possible to analyse the iteration between structure and function. It has been known for long that bone tissue is capable of remodeling and changing its internal structure according to loads, but the dynamics of these changes are still being analysed. This part of the study was aimed to identify the parameters that could quantify the structural changes of bone tissue during the development of a given disease: osteoarthritis. A study on tissue quality would have to be divided into different classes, which would require a scale of analysis not suitable for the micro-CT. For this reason the study was focused only on the mineralization of the tissue, highlighting the difference between bone density and tissue density, working in a context where there is still an ongoing scientific debate.
Resumo:
Background: A controlled, gradual distraction of the periosteum is expected to result in the formation of new bone. Purpose: This study was designed to estimate the possibility of new bone formation by periosteal distraction in a rat calvarium model. Material and Methods: Sixteen animals were subjected to a 7-day latency period and distraction rate at 0.4 mm/24 hours for 10 days. Two experimental groups with seven rats each were killed at 10 and 20 days of consolidation period and analyzed by means of microcomputed tomography, histologically and histomorphometry. Results: In the central regions underneath the disk device, signs of both bone apposition and bone resorption were observed. Peripheral to the disc, new bone was consistently observed. This new bone was up to two and three times thicker than the original bone after a 10- and 20-day consolidation period, respectively. Signs of ongoing woven bone formation indicated that the stimulus for new bone formation was still present. There were no statistically significant differences regarding bone density, bone volume, and total bone height between the two groups. Conclusion: The periosteal distraction model in the rat calvarium can stimulate the formation of considerable amounts of new bone.
Resumo:
There are two main types of bone in the human body, trabecular and cortical bone. Cortical bone is primarily found on the outer surface of most bones in the body while trabecular bone is found in vertebrae and at the end of long bones (Ross 2007). Osteoporosis is a condition that compromises the structural integrity of trabecular bone, greatly reducing the ability of the bone to absorb energy from falls. The current method for diagnosing osteoporosis and predicting fracture risk is measurement of bone mineral density. Limitations of this method include dependence on the bone density measurement device and dependence on type of test and measurement location (Rubin 2005). Each year there are approximately 250,000 hip fractures in the United States due to osteoporosis (Kleerekoper 2006). Currently, the most common method for repairing a hip fracture is a hip fixation surgery. During surgery, a temporary guide wire is inserted to guide the permanent screw into place and then removed. It is believed that directly measuring this screw pullout force may result in a better assessment of bone quality than current indirect measurement techniques (T. Bowen 2008-2010, pers. comm.). The objective of this project is to design a device that can measure the force required to extract this guide wire. It is believed that this would give the surgeon a direct, quantitative measurement of bone quality at the site of the fixation. A first generation device was designed by a Bucknell Biomedical Engineering Senior Design team during the 2008- 2009 Academic Year. The first step of this project was to examine the device, conduct a thorough design analysis, and brainstorm new concepts. The concept selected uses a translational screw to extract the guide wire. The device was fabricated and underwent validation testing to ensure that the device was functional and met the required engineering specifications. Two tests were conducted, one to test the functionality of the device by testing if the device gave repeatable results, and the other to test the sensitivity of the device to misalignment. Guide wires were extracted from 3 materials, low density polyethylene, ultra high molecular weight polyethylene, and polypropylene and the force of extraction was measured. During testing, it was discovered that the spring in the device did not have a high enough spring constant to reach the high forces necessary for extracting the wires without excessive deflection of the spring. The test procedure was modified slightly so the wires were not fully threaded into the material. The testing results indicate that there is significant variation in the screw pullout force, up to 30% of the average value. This significant variation was attributed to problems in the testing and data collection, and a revised set of tests was proposed to better evaluate the performance of the device. The fabricated device is a fully-functioning prototype and further refinements and testing of the device may lead to a 3rd generation version capable of measuring the screw pullout force during hip fixation surgery.
Resumo:
To evaluate the hard and the soft tissue parameters around implants supporting fixed prostheses over a period of 5 years and the possible association to the increase in periimplant bone density (IPBD).
Resumo:
Purpose: The aim of this paper was to review the clinical literature on the Resonance frequency analysis (RFA) and Periotest techniques in order to assess the validity and prognostic value of each technique to detect implants at risk for failure. Material and methods: A search was made using the PubMed database to find clinical studies using the RFA and/or Periotest techniques. Results: A limited number of clinical reports were found. No randomized-controlled clinical trials or prospective cohort studies could be found for validity testing of the techniques. Consequently, only a narrative review was prepared to cover general aspects of the techniques, factors influencing measurements and the clinical relevance of the techniques. Conclusions: Factors such as bone density, upper or lower jaw, abutment length and supracrestal implant length seem to influence both RFA and Periotest measurements. Data suggest that high RFA and low Periotest values indicate successfully integrated implants and that low/decreasing RFA and high/increasing Periotest values may be signs of ongoing disintegration and/or marginal bone loss. However, single readings using any of the techniques are of limited clinical value. The prognostic value of the RFA and Periotest techniques in predicting loss of implant stability has yet to be established in prospective clinical studies. To cite this article: Aparicio C, Lang N P, Rangert B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clin. Oral Imp. Res., 17 (Suppl. 2), 2006; 2-7.
Resumo:
STUDY DESIGN: This is an experimental study on an artificial vertebra model and human cadaveric spine. OBJECTIVE: Characterization of polymethylmethacrylate (PMMA) bone cement distribution in the vertebral body as a function of cement viscosity, bone porosity, and injection speed. Identification of relevant parameters for improved cement flow predictability and leak prevention in vertebroplasty. SUMMARY OF BACKGROUND DATA: Vertebroplasty is an efficient procedure to treat vertebral fractures and stabilize osteoporotic bone in the spine. Severe complications result from bone cement leakage into the spinal canal or the vascular system. Cement viscosity has been identified as an important parameter for leak prevention but the influence of bone structure and injection speed remain obscure. METHODS: An artificial vertebra model based on open porous aluminum foam was used to simulate bone of known porosity. Fifty-six vertebroplasties with 4 different starting viscosity levels and 2 different injection speeds were performed on artificial vertebrae of 3 different porosities. A validation on a human cadaveric spine was executed. The experiments were radiographically monitored and the shape of the cement clouds quantitatively described with the 2 indicators circularity and mean cement spreading distance. RESULTS: An increase in circularity and a decrease in mean cement spreading distance was observed with increasing viscosity, with the most striking change occurring between 50 and 100 Pas. Larger pores resulted in significantly reduced circularity and increased mean cement spreading distance whereas the effect of injection speed on the 2 indicators was not significant. CONCLUSION: Viscosity is the key factor for reducing the risk of PMMA cement leakage and it should be adapted to the degree of osteoporosis encountered in each patient. It may be advisable to opt for a higher starting viscosity but to inject the material at a faster rate.