975 resultados para bmp 2 gene
Resumo:
Evidence from epidemiological studies, clinical trials, and animal experiments indicates that inhibitors of prostaglandin synthesis lower the risk of colon cancer. We tested the hypothesis that abnormal expression of prostaglandin H synthase 2 (PHS-2), which can be induced by oncogenes and tumor promoters, occurs during colon carcinogenesis by examining its level in colon tumors. Human colon cancers were found to have an increased expression of PHS-2 mRNA compared with normal colon specimens from the same patient (n = 5). In situ hybridization showed that the neoplastic colonocytes had increased expression of PHS-2 (n = 4). Additionally, five colon cancer cell lines were shown to express high levels of PHS-2 mRNA even in the absence of a known inducer of PHS-2. To study the basis for this increased gene expression, we transfected a colon cancer cell line, HCT-116, with a reporter gene containing 2.0 kb of the 5' regulatory sequence of the PHS-2 gene. Constitutive transcription of the reporter gene was observed, whereas normal control cell lines transcribed the reporter only in response to an exogenous agonist. We conclude that PHS-2 is transcribed abnormally in human colon cancers and that this may be one mechanism by which prostaglandins or related compounds that support carcinogenesis are generated.
Resumo:
Injection of mineral oils such as pristane into the peritoneal cavities of BALB/c mice results in a chronic peritonitis associated with high tissue levels of interleukin 6 (IL-6). Here we show that increased prostaglandin E2 (PGE2) synthesis causes induction of IL-6 and that expression of an inducible cyclooxygenase, Cox-2, may mediate this process. Levels of both PGE2 and IL-6 are elevated in inflammatory exudates from pristane-treated mice compared with lavage samples from untreated mice. The Cox-2 gene is induced in the peritoneal macrophage fraction isolated from the mice. A cause and effect relationship between increased macrophage PGE2 and IL-6 production is shown in vitro. When peritoneal macrophages are activated with an inflammatory stimulus (polymerized albumin), the Cox-2 gene is induced and secretion of PGE2 and IL-6 increases, with elevated PGE2 appearing before IL-6. Cotreatment with 1 microM indomethacin inhibits PGE2 production by the cells and reduces the induction of IL-6 mRNA but has no effect on Cox-2 mRNA, consistent with the fact that the drug inhibits catalytic activity of the cyclooxygenase but does not affect expression of the gene. Addition of exogenous PGE2 to macrophages induces IL-6 protein and mRNA synthesis, indicating that the eicosanoid stimulates IL-6 production at the level of gene expression. PGE2-stimulated IL-6 production is unaffected by addition of indomethacin. Taken together with the earlier finding that indomethacin diminishes the elevation of IL-6 in pristane-treated mice, the results show that PGE2 can induce IL-6 production in vivo and implicate expression of the Cox-2 gene in the regulation of this cytokine.
Resumo:
Like human gliomas, the rat 9L gliosarcoma secretes the immunosuppressive transforming growth factor beta (TGF-beta). Using the 9L model, we tested our hypothesis that genetic modification of glioma cells to block TGF-beta expression may enhance their immunogenicity and make them more suitable for active tumor immunotherapy. Subcutaneous immunizations of tumor-bearing animals with 9L cells genetically modified to inhibit TGF-beta expression with an antisense plasmid vector resulted in a significantly higher number of animals surviving for 12 weeks (11/11, 100%) compared to immunizations with control vector-modified 9L cells (2/15, 13%) or 9L cells transduced with an interleukin 2 retroviral vector (3/10, 30%) (P < 0.001 for both comparisons). Histologic evaluation of implantation sites 12 weeks after treatment revealed no evidence of residual tumor. In vitro tumor cytotoxicity assays with lymph node effector cells revealed a 3- to 4-fold increase in lytic activity for the animals immunized with TGF-beta antisense-modified tumor cells compared to immunizations with control vector or interleukin 2 gene-modified tumor cells. These results indicate that inhibition of TGF-beta expression significantly enhances tumor-cell immunogenicity and supports future clinical evaluation of TGF-beta antisense gene therapy for TGF-beta-expressing tumors.
Resumo:
Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers.
Resumo:
Predominant usage of V beta 8.2 gene segments, encoding a T-cell receptor (TCR) beta chain variable region, has been reported for pathogenic Lewis rat T cells reactive to myelin basic protein (MBP). However, up to 75% of the alpha/beta T cells in a panel of MBP-specific T-cell lines did not display TCR V beta 8.2, V beta 8.5, V beta 10, or V beta 16 elements. To further investigate TCR usage, we sorted the T-cell lines for V beta 8.2- and V beta 10-positive T cells or depleted the lines of cells with these TCRs. V beta 8.2-positive T cells and one of the depleted T-cell lines strongly reacted against the MBP peptide MBP-(68-88). The depleted T-cell line caused marked experimental autoimmune encephalomyelitis (EAE) even in Lewis rats in which endogenous V beta 8.2-positive T cells had been eliminated by neonatal treatment with anti-V beta 8.2 monoclonal antibodies. T-cell hybridomas generated from this line predominantly used V beta 3 TCR genes coexpressed with TCR V alpha 2 transcripts, which were also used by V beta 8.2-positive T cells. Furthermore, V beta 10-positive T cells reactive to MBP-(44-67) were encephalitogenic when injected immediately after positive selection. After induction of EAE by sorted V beta 8.2- or V beta 10-positive T-cell lines, immunocytochemical analysis of the spinal cord tissue showed a predominance of the injected TCR or of nontypable alpha/beta T cells after injection of the depleted line. Our results demonstrate heterogeneity of TCR beta-chain usage even for a single autoantigen in an inbred strain. Moreover, V beta 8.2-positive T cells are not essential for the induction and progression of adoptive-transfer EAE.
Resumo:
Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs. We show that the inhibitory effect is dominant in an antibody mixture, and it depends on antibody bivalency. By using radiolabeled mAbs we found that all of three tumor-inhibitory mAbs became rapidly inaccessible to acid treatment when incubated with tumor cells. However, a tumor-stimulatory mAb remained accessible to extracellular treatments, indicating that it did not undergo endocytosis. In addition, intracellular fragments of the inhibitory mAbs, but not of the stimulatory mAb, were observed. Electron microscopy of colloidal gold-antibody conjugates confirmed the absence of endocytosis of the stimulatory mAb but detected endocytic vesicles containing an inhibitory mAb. We conclude that acceleration of cell growth by ErbB-2 correlates with cell surface localization, whereas inhibition of tumor growth is associated with an intrinsic ability of anti-ErbB-2 mAbs to induce endocytosis. These conclusions are relevant to the selection of optimal mAbs for immunotherapy and may have implications for the mechanism of cellular transformation by an overexpressed erbB-2 gene.
Resumo:
The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.
Resumo:
Bacterial LPS triggers dramatic changes in gene expression in macrophages. We show here that LPS regulated several members of the histone deacetylase (HDAC) family at the mRNA level in murine bone marrow-derived macrophages (BMM). LPS transiently repressed, then induced a number of HDACs (Hdac-4, 5, 7) in BMM, whereas Hdac-1 mRNA was induced more rapidly. Treatment of BMM with trichostatin A (TSA), an inhibitor of HDACs, enhanced LPS-induced expression of the Cox-2, Cxcl2, and Ifit2 genes. In the case of Cox-2, this effect was also apparent at the promoter level. Overexpression of Hdac-8 in RAW264 murine macrophages blocked the ability of LPS to induce Cox-2 mRNA. Another class of LPS-inducible genes, which included Ccl2, Ccl7, and Edn1, was suppressed by TSA, an effect most likely mediated by PU.1 degradation. Hence, HDACs act as potent and selective negative regulators of proinflammatory gene expression and act to prevent excessive inflammatory responses in macrophages.
Resumo:
The adipocyte derived peptide hormone leptin is known to regulate apoptosis and cell viability in several cells and tissues, as well as having several pancreatic islet beta-cell specific effects such as inhibition of glucose-stimulated insulin secretion. This study investigated the effects of leptin upon apoptosis induced by serum depletion and on expression of the apoptotic regulators B-cell leukaemia 2 gene product (BCL-2) and BCL2-associated X protein (Bax) in the glucose-responsive BRIN-BD11 beta-cell line.
Resumo:
We performed an immunogenetic analysis of 345 IGHV-IGHD-IGHJ rearrangements from 337 cases with primary splenic small B-cell lymphomas of marginal-zone origin. Three immunoglobulin (IG) heavy variable (IGHV) genes accounted for 45.8% of the cases (IGHV1-2, 24.9%; IGHV4-34, 12.8%; IGHV3-23, 8.1%). Particularly for the IGHV1-2 gene, strong biases were evident regarding utilization of different alleles, with 79/86 rearrangements (92%) using allele (*)04. Among cases more stringently classified as splenic marginal-zone lymphoma (SMZL) thanks to the availability of splenic histopathological specimens, the frequency of IGHV1-2(*)04 peaked at 31%. The IGHV1-2(*)04 rearrangements carried significantly longer complementarity-determining region-3 (CDR3) than all other cases and showed biased IGHD gene usage, leading to CDR3s with common motifs. The great majority of analyzed rearrangements (299/345, 86.7%) carried IGHV genes with some impact of somatic hypermutation, from minimal to pronounced. Noticeably, 75/79 (95%) IGHV1-2(*)04 rearrangements were mutated; however, they mostly (56/75 cases; 74.6%) carried few mutations (97-99.9% germline identity) of conservative nature and restricted distribution. These distinctive features of the IG receptors indicate selection by (super)antigenic element(s) in the pathogenesis of SMZL. Furthermore, they raise the possibility that certain SMZL subtypes could derive from progenitor populations adapted to particular antigenic challenges through selection of VH domain specificities, in particular the IGHV1-2(*)04 allele.
Resumo:
PURPOSE: This study evaluated the quality of DNA obtained from stored human saliva and its applicability to human identification. METHODS: The saliva samples of 20 subjects, collected in the form of saliva in natura and from mouth swabs and stored at -20ºC, were analyzed. After 7 days, the DNA was extracted from the 40 saliva samples and subjected to PCR and electrophoresis. After 180 days, the technique was repeated with the 20 swab samples. RESULTS: The first-stage results indicated that DNA was successfully extracted in 97.5% of reactions, 95% of saliva in natura and 100% of swab saliva samples, with no statistically significant difference between the forms of saliva. In the second phase, the result was positive for all 20 analyzed samples (100%). Subsequently, in order to analyze the quality of the DNA obtained from human saliva, the SIX3-2 gene was tested on the 20 mouth swab samples, and the PCR products were digested using the MbO1 restriction enzyme to evaluate polymorphisms in the ADRA-2 gene, with positive results for most samples. CONCLUSION: It was concluded that the quantity and quality of DNA from saliva and the techniques employed are adequate for forensic analysis of DNA.
Resumo:
Interethnic differences exist in disease prevalence, especially with regard to cancer and cardiovascular diseases, which involve altered expression or activity of matrix metalloproteinases (MMPs). The hypothesis being tested in this study is that interethnic differences exist between blacks and whites with regard to the distribution of genetic variants of MMP polymorphisms and haplotypes. We examined the distribution of polymorphisms of MMP-2 and MMP-9 genes in 177 black and 140 white subjects. We studied the following polymorphisms: the C(-1306)T in the promoter of the MMP-2 gene, the C(-1562)T and a microsatellite -90(CA)(14-24) in the promoter, and the Q279R in exon 6 of the MMP-9 gene. We have also compared our results with those from Hapmap or Seattle SNPs Projects and estimated the haplotype frequency in these two ethnic groups. The ""C'' allele for the C(-1306)T polymorphism was more common in blacks (91.5%) than in whites (80.4%; p<0.0001). The ""T'' allele for the C(-1562)T polymorphism was more common in blacks (15.0%) than in whites (8.9%; p=0.0279), as well as the alleles with >21 repeats for the -90(CA)(14-24) were more common in blacks than in whites (61.9% in blacks and 49.3% in whites; p=0.0017). We found no interethnic differences for the Q279R polymorphism. Moreover, two haplotypes that combine ""detrimental'' alleles were found at higher frequencies in blacks than in whites (31% vs. 16.4%, respectively; p<0.05). The interethnic differences being reported here replicate those previously found with smaller number of subjects in the Hapmap or Seattle SNPs data and may help explain the higher prevalence of cancer and cardiovascular diseases in blacks compared with whites. Our findings suggest a proportional significance of these polymorphisms in each ethnic group.
Resumo:
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor beta superfamily, especially BMP-2, induce bone formation in vivo, and clinical application in repair of bone fractures and defects is expected. However, appropriate systems to delivery BMPs for practical use need to be developed with the objective to heal cartilage and bone-related diseases in medical, dental and veterinary practice. Thus, the aim of this article was to present an overview of the principals carriers used to delivery BMPs and alternative delivery systems for these proteins.
Resumo:
Two hundred fifty-seven nalidixic acid-resistant enterobacterial isolates were collected in a Brazilian community from January 2000 to May 2005 to determine the prevalence of plasmid-encoded extended-spectrum beta-lactamases. The bla(CTX-M) genetic environment was determined by polymerase chain reaction and sequencing. Eleven isolates (4.2%) harbored a bla(CTX-M-2) gene, 3 isolates bla(CTX-M-9), 2 isolates bla(CTX-M-8), and 6 isolates bla(SHV-5). Two novel bla(CTX-M-2) variants, namely, bla(CTX-M-74) and bla(CTX-M-75), were identified. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The molecular mechanism that controls the response to phosphate shortage in Neurospora crassa involves four regulatory genes - nuc-2, preg, pgov, and nuc-1. Phosphate shortage is sensed by the nuc-2 gene, the product of which inhibits the functioning of the PREG-PGOV complex. This allows the translocation of the transcriptional factor NUC-1 into the nucleus, which activates the transcription of phosphate-repressible phosphatases. The nuc-2A mutant strain of N. crassa carries a loss-of-function mutation in the nuc-2 gene, which encodes an ankyrin-like repeat protein. In this study, we identified transcripts that are downregutated in the nuc-2A mutant strain. Functional grouping of these expressed sequence tags allowed the identification of genes that play essential roles in different cellular processes such as transport, transcriptional regulation, signal transduction, metabolism, protein synthesis, protein fate, and development. These results reveal novel aspects of the phosphorus-sensing network in N. crassa. (C) 2009 Elsevier GmbH. All rights reserved.