1000 resultados para blue nevus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we will describe new bimesogenic nematic liquid crystals that have high flexoelectro-optic coefficients (e/K),of the order of 1.5 CN 1 m-1, high switching angles, up to 100° and fast response times, of the order of 100μs or less. We will describe devices constructed, using the ULH texture that may be switched to the optimum angle of 45° for a birefringence based device with the fields of 4Vμm-1 over a wide temperature range. Such devices use an "in plane" optical switching mode, have gray scale capability and a wide viewing angle. We will describe devices using the USH or Grandjean texture that have an optically isotropic "field off" black state, uses "in plane" switching E fields, to give an induced birefringence phase device, with switching times of the order of 20μs. We will briefly describe new highly reflective Blue Phase devices stable over a 50V temperature range in which an electric field is used to switch the reflection from red to green, for example. Full RGB reflections may be obtained with switching times of a few milliseconds. Finally we will briefly mention potential applications including high efficiency RGB liquid crystal laser sources. © 2006 SID.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blue discolouration met with in the canned body meat of crab (Scylla serrata) was due to copper content exceeding 1.8 to 2.0 mg/100g on dry weight basis. Bleeding the cleaned carcasses of crab thoroughly in running water brought down the copper content below this level and blue discolouration prevented. Addition of copper ions to the thoroughly bled crab meat to raise the copper content above this level caused discolouration. The incidence of blue discolouration was independent of the freshness of the animals used. Citric acid in high concentration prevented blueing to some extent, but is not advisable as texture and flavour were adversely affected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range-125 to 125°C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present printable laser devices formed by dispersing dye-doped chiral nematic liquid crystals in solution-processible polymers. Unlike current technology, this allows lasers to be formed on a wide variety of surfaces, e.g. paper, plastic, metal. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.