983 resultados para bismuth titanate
Resumo:
Part I
The physical phenomena which will ultimately limit the packing density of planar bipolar and MOS integrated circuits are examined. The maximum packing density is obtained by minimizing the supply voltage and the size of the devices. The minimum size of a bipolar transistor is determined by junction breakdown, punch-through and doping fluctuations. The minimum size of a MOS transistor is determined by gate oxide breakdown and drain-source punch-through. The packing density of fully active bipolar or static non-complementary MOS circuits becomes limited by power dissipation. The packing density of circuits which are not fully active such as read-only memories, becomes limited by the area occupied by the devices, and the frequency is limited by the circuit time constants and by metal migration. The packing density of fully active dynamic or complementary MOS circuits is limited by the area occupied by the devices, and the frequency is limited by power dissipation and metal migration. It is concluded that read-only memories will reach approximately the same performance and packing density with MOS and bipolar technologies, while fully active circuits will reach the highest levels of integration with dynamic MOS or complementary MOS technologies.
Part II
Because the Schottky diode is a one-carrier device, it has both advantages and disadvantages with respect to the junction diode which is a two-carrier device. The advantage is that there are practically no excess minority carriers which must be swept out before the diode blocks current in the reverse direction, i.e. a much faster recovery time. The disadvantage of the Schottky diode is that for a high voltage device it is not possible to use conductivity modulation as in the p i n diode; since charge carriers are of one sign, no charge cancellation can occur and current becomes space charge limited. The Schottky diode design is developed in Section 2 and the characteristics of an optimally designed silicon Schottky diode are summarized in Fig. 9. Design criteria and quantitative comparison of junction and Schottky diodes is given in Table 1 and Fig. 10. Although somewhat approximate, the treatment allows a systematic quantitative comparison of the devices for any given application.
Part III
We interpret measurements of permittivity of perovskite strontium titanate as a function of orientation, temperature, electric field and frequency performed by Dr. Richard Neville. The free energy of the crystal is calculated as a function of polarization. The Curie-Weiss law and the LST relation are verified. A generalized LST relation is used to calculate the permittivity of strontium titanate from zero to optic frequencies. Two active optic modes are important. The lower frequency mode is attributed mainly to motion of the strontium ions with respect to the rest of the lattice, while the higher frequency active mode is attributed to motion of the titanium ions with respect to the oxygen lattice. An anomalous resonance which multi-domain strontium titanate crystals exhibit below 65°K is described and a plausible mechanism which explains the phenomenon is presented.
Resumo:
Sb-Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb-Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 380 nm are read out by a dynamic setup, the laser wavelength is 780 nm and the numerical aperture of pickup lens is 0.45. The effects of the Sb-Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb-Bi mask layer is about 0.5 mW, and the corresponding carrier-to-noise ratio is about 20 dB at the film thickness of 50 nm. The super-resolution mechanism of the Sb-Bi alloy mask layer is discussed based on its temperature dependence of reflection.
Resumo:
We investigate the broadband infrared emission of bismuth doped and bismuth/dysprosium codoped chalcohalide glasses. It is found that the bismuth/dysprosium codoping can drastically enhance the fluorescence as compared with either bismuth or dysprosium doped glasses. Meanwhile, the full width at half maximum of bismuth/dysprosium codoped glasses is over 170 nm, which is the largest value among all the reported rare-earth doped chalcohalide glasses. An ideal way for energy consumption between bismuth and dysprosium ions is supposed. Such improved gain spectra of both bismuth and dysprosium ions may have potential applications in developing broadband fibre amplifiers.
Resumo:
This letter reports the ultrabroadband infrared luminescence from 1000- to 1700-nm wavelength range and demonstrate optical amplification at the second optical communication window in a novel bismuth-doped germanosilicate glass. The full-width at half-maximum of the luminescence is about 300 mn and the optical gain is larger than 1.37 within the wavelength region from 1272 to 1348 nm with pump power 0.97 W. This material could be useful to fabricate ultrabroadband optical fiber amplifiers.
Resumo:
We demonstrate the broadband optical amplification in bismuth-doped strontium germanate glass with 808 nm and 980 nm laser diodes (LDs) as excitation sources. The net optical gain has been obtained within the wavelength region of 1272 to 1348 nm with 808 nm laser diode under 0.97 W power. The maximum gain and gain coefficients are 1.23 and 1.03 cm(-1) at 1315 nm, respectively. The signal increment at 1300 nm is 2.8 times with 980 nm LD, under 3 W power. The differential thermal analysis measurement reveals the good thermal stability of the studied glass. This glass could be suggested as a promising gain medium for broadband optical amplifiers.
Resumo:
In this paper, we present the broadband optical amplification in bismuth-doped germanate glass, at the second telecommunication window when excited with 808 nm and 980 nm laser diodes, respectively. The amplification range is from 1272 nm to 1348 nm wavelength, which is within the O-band of silica fiber communication. This bismuth-doped glass can be used as ultra broadband amplification material for wavelength-division-multiplexing (WDM) at the second telecommunication window.
Resumo:
Broadband infrared luminescence covering the optical telecommunication wavelength region of 0, E and S bands was observed from bismuth-doped zinc aluminosilicate glasses and glass-ceramics. The spectroscopic properties of the glasses and glass-ceramics depend on the thermal-treatment history. With the appearance of gahnite (ZnAl2O4) crystalline phase, the fluorescent peak moves to longer wavelength, but the fluorescent intensity decreases. The similar to 1300 nm fluorescence with a FWHM larger than 250 nm and a lifetime longer than 600 mu s possesses these optical materials with potential applications in laser devices and broadband amplifiers. The broad infrared luminescence from the bismuth-doped zinc aluminosilicate glasses and glass-ceramics might be from BiO or bismuth clusters rather than from Bi5+ and Bi3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Er3+/Yb3+ co-doped glasses with compositions of xBi(2)O(3)-(65-x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O (where x = 0, 2.5, 5, 7.5 and 10 mol%) were prepared using the normal melt quench technique. The optical absorption spectra of the glasses were recorded in the wavelength range 300-1700 nm. The effect of Bi2O3 content on the thermal stability and absorption spectra of glasses was investigated. In addition, the Judd-Ofelt parameters and oscillator strengths were calculated by employing Judd-Ofelt theory. It was observed that the positions of the fundamental absorption edge and cut-off wavelength shifted towards red as the content of Bi2O3 increased. However, there were no red shifts found both in the peak wavelength and in the center of mass wavelength of all absorption bands with Bi2O3 content increasing. The results of Judd-Ofelt theory analysis showed that Judd-Ofelt parameters Omega(t), (t = 2, 4, 6) changed sharply when Bi2O3 concentration exceeded 5 mol%. The variation trends of experimental oscillator strength were similar with those of Judd-Ofelt parameters as function of Bi2O3 concentrations. Moreover, differential scanning calorimetry experiments showed that the increases of Bi2O3 content weakened the network structure and then lowered the thermal stability of the glasses. The spontaneous emission probability A(rad), branching ratio beta and the radiative lifetime tau(rad) were also calculated and analyzed. The stimulated emission cross-section of Er3+ was calculated according to the McCumber theory. It was found that the stimulated emission cross-section of Er3+ was monotonically increases with Bi2O3 content increasing. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Infrared-to-visible upconversion fluorescence of Er(3+)/Yb(3+) co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation. Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb(3+)-Er(3+) concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H_(11/2)-->4I_(15/2), 4S_(3/2)-->4I_(15/2), and 4F_(9/2)-->4I_(15/2), respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I_(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er(3+)/Yb(3+) co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.
Resumo:
For the first time. effect of halide ions (F-, Cl-, Br-, and I-) introduction on structure, thermal stability, and upconversion fluorescence in Er3+/Yb3+-codoped oxide-halide germanium-bismuth glasses has been systematically investigated. The results show that halide ions modified germanium-bismuth glasses have lower maximum phonon energy and phonon density, worse thermal stability. longer measured lifetimes of I-4(l1/2) level, and stronger upconversion emission than germanium-bismuth glass. All these results indicate that halide ions play an important role in the formation of glass network, and have an important influence on the upconversion luminescence. The possible upconversion mechanisms of Er3+ ion are also evaluated. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.
Resumo:
Yb3+Er3+-codoped chloride-modified germanate-bismuth-lead glasses have been synthesized by the conventional melting and quenching method. Structural and thermal stability properties have been obtained on the basis of the Raman spectra and differential thermal analysis, which indicate that the PbCl2 addition has an important influence on the phonon density of states, maximum phonon energy, and thermal stability of host glasses. The Judd-Ofelt intensity parameters and quantum efficiencies were calculated on the basis of the Judd-Ofelt theory and lifetime measurements. For the 1.53 mu m emission band, the full widths at the half-maximum increase and peak wavelengths are blueshifted with increasing PbCl2 content. Moreover, the effect of the PbCl2 addition on the phonon density of states, OH- content, and upconversion luminescence has been discussed and evaluated. Our results reveal that, with increasing PbCl2 content, the decrease of phonon density and OH- content contributes more to the enhanced upconversion emissions than that of maximum phonon energy. (c) 2005 Optical Society of America
Resumo:
Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+ codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (similar to 750 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Structural and up-conversion fluorescence properties in ytterbium-sensitized thulium-doped novel oxychloride bismuth-germanium glass have been studied. The structure of novel bismuth-germanium glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wave numbers. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the up-conversion luminescence. Intense blue and weak red emissions centered at 477 and 650 mn, corresponding to the transitions 1G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. This novel oxychloride bismuth-germanium glass with low maximum phonon energy (similar to 730 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.