922 resultados para benzophenone synthase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinopathy of prematurity is a sight-threatening complication of premature birth caused by nitrooxidativeinsult to the developing retinal vasculature during therapeutic hyperoxia exposure and laterischemia-induced neovascularization on supplemental oxygen withdrawal. In the vasodegenerativephase, during hyperoxia, defective endothelial nitric oxide synthase (NOS) produces reactive oxygenand nitrogen free radicals rather than vasoprotective nitric oxide for unclear reasons. More important,NOS critically depends on the availability of the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4).Because BH4 synthesis is controlled enzymatically by GTP cyclohydrolase (GTPCH), we used GTPCHdepletedmice [hyperphenylalanaemia strain Q4 (hph1)] to investigate the impact of hyperoxia on BH4bioavailability and retinal vascular pathology in the neonate. Hyperoxia decreased BH4 in retinas,lungs, and aortas in all experimental groups, resulting in a dose-dependent decrease in NOS activityand, in the wild-type group, elevated NOS-derived superoxide. Retinal dopamine levels were similarlydiminished, consistent with the dependence of tyrosine hydroxylase on BH4. Despite greater depletionof BH4, the hphþ/ and hph1/ groups did not show exacerbated hyperoxia-induced vessel closure,but exhibited greater vascular protection and reduced progression to neovascular disease. This vasoprotectiveeffect was independent of enhanced circulating vascular endothelial growth factor (VEGF),which was reduced by hyperoxia, but Q5 to local ganglion cell layerederived VEGF. A constitutively higherlevel of VEGF expression associated with retinal development protects GTPCH-deficient neonates fromoxygen-induced vascular damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemotherapies that target thymidylate synthase (TS) continue to see considerable clinical expansion in non-small cell lung cancer (NSCLC). One drawback to TS-targeted therapies is drug resistance and subsequent treatment failure. Novel therapeutic and biomarker-driven strategies are urgently needed. The enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is reported to protect tumor cells from aberrant misincorporation of uracil during TS inhibition. The goal of this study was to investigate the expression and significance of dUTPase in mediating response to TS-targeted agents in NSCLC. The expression of dUTPase in NSCLC cell lines and clinical specimens was measured by quantitative real-time reverse transcriptase PCR and immunohistochemistry. Using a validated RNA interference approach, dUTPase was effectively silenced in a panel of NSCLC cell lines and response to the fluoropyrimidine fluorodeoxyuridine (FUdR) and the antifolate pemetrexed was analyzed using growth inhibition and clonogenic assays. Apoptosis was analyzed by flow cytometry. Significant variation in the quantity and cellular expression of dUTPase was observed, including clear evidence of overexpression in NSCLC cell line models and tumor specimens at the mRNA and protein level. RNA interference-mediated silencing of dUTPase significantly sensitized NSCLC cells to growth inhibition induced by FUdR and pemetrexed. This sensitization was accompanied by a significant expansion of intracellular dUTP pools and significant decreases in NSCLC cell viability evaluated by clonogenicity and apoptotic analyses. Together, these results strongly suggest that uracil misincorporation is a potent determinant of cytotoxicity to TS inhibition in NSCLC and that inhibition of dUTPase is a mechanism-based therapeutic approach to significantly enhance the efficacy of TS-targeted chemotherapeutic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recent therapeutic advances, the response rates to chemotherapy for patients with metastatic colon cancer remain at approximately 50% with the fluoropyrimidine, 5-fluorouracil (5-FU), continuing to serve as the foundation chemotherapeutic agent for the treatment of this disease. Previous studies have demonstrated that overexpression of thymidylate synthase (TS) is a key determinant of resistance to 5-FU-based chemotherapy. Therefore, there is a significant need to develop alternative therapeutic strategies to overcome TS-mediated resistance. In this study, we demonstrate that the histone deacetylase inhibitors (HDACi) vorinostat and LBH589 significantly downregulate TS gene expression in a panel of colon cancer cell lines. Downregulation of TS was independent of p53, p21 and HDAC2 expression and was achievable in vivo as demonstrated by mouse xenograft models. We provide evidence that HDACi treatment leads to a potent transcriptional repression of the TS gene. Combination of the fluoropyrimidines 5-FU or FUdR with both vorinostat and LBH589 enhanced cell cycle arrest and growth inhibition. Importantly, the downstream effects of TS inhibition were significantly enhanced by this combination including the inhibition of acute TS induction and the enhanced accumulation of the cytotoxic nucleotide intermediate dUTP. These data demonstrate that HDACi repress TS expression at the level of transcription and provides the first evidence suggesting a direct mechanistic link between TS downregulation and the synergistic interaction observed between HDACi and 5-FU. This study provides rationale for the continued clinical evaluation of HDACi in combination with 5-FU-based therapies as a strategy to overcome TS-mediated resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac neuronal nitric-oxide synthase (nNOS) has been described as a modulator of cardiac contractility. We have demonstrated previously that isoform 4b of the sarcolemmal calcium pump (PMCA4b) binds to nNOS in the heart and that this complex regulates beta-adrenergic signal transmission in vivo. Here, we investigated whether the nNOS-PMCA4b complex serves as a specific signaling modulator in the heart. PMCA4b transgenic mice (PMCA4b-TG) showed a significant reduction in nNOS and total NOS activities as well as in cGMP levels in the heart compared with their wild type (WT) littermates. In contrast, PMCA4b-TG hearts showed an elevation in cAMP levels compared with the WT. Adult cardiomyocytes isolated from PMCA4b-TG mice demonstrated a 3-fold increase in Ser(16) phospholamban (PLB) phosphorylation as well as Ser(22) and Ser(23) cardiac troponin I (cTnI) phosphorylation at base line compared with the WT. In addition, the relative induction of PLB phosphorylation and cTnI phosphorylation following isoproterenol treatment was severely reduced in PMCA4b-TG myocytes, explaining the blunted physiological response to the beta-adrenergic stimulation. In keeping with the data from the transgenic animals, neonatal rat cardiomyocytes overexpressing PMCA4b showed a significant reduction in nitric oxide and cGMP levels. This was accompanied by an increase in cAMP levels, which led to an increase in both PLB and cTnI phosphorylation at base line. Elevated cAMP levels were likely due to the modulation of cardiac phosphodiesterase, which determined the balance between cGMP and cAMP following PMCA4b overexpression. In conclusion, these results showed that the nNOS-PMCA4b complex regulates contractility via cAMP and phosphorylation of both PLB and cTnI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Bioquímica), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Insulin resistance and arterial hypertension are related, but the underlying mechanism is unknown. Endothelial nitric oxide synthase (eNOS) is expressed in skeletal muscle, where it may govern metabolic processes, and in the vascular endothelium, where it regulates arterial pressure. METHODS AND RESULTS: To study the role of eNOS in the control of the metabolic action of insulin, we assessed insulin sensitivity in conscious mice with disruption of the gene encoding for eNOS. eNOS(-/-) mice were hypertensive and had fasting hyperinsulinemia, hyperlipidemia, and a 40% lower insulin-stimulated glucose uptake than control mice. Insulin resistance in eNOS(-/-) mice was related specifically to impaired NO synthesis, because in equally hypertensive 1-kidney/1-clip mice (a model of renovascular hypertension), insulin-stimulated glucose uptake was normal. CONCLUSIONS: These results indicate that eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. A single gene defect, eNOS deficiency, may represent the link between metabolic and cardiovascular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malate synthase (MS; EC 4.1.3.2), an enzyme specific to the glyoxylate cycle, was studied in cotyledons of dark-grown soybean (Glycine max L) seedlings with light and electron microscopy techniques. Immunogold localization confirmed biochemical evidence that MS from soybean is a glyoxysomal matrix enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phascolomyces articulosus genomic DNA was isolated from 48 h old hyphae and was used for amplification of a chitin synthase fragment by the polymerase chain reaction method. The primers used in the amplification corresponded to two widely conserved amino acid regions found in chitin synthases of many fimgi. Amphfication resulted in four bands (820, 900, 1000 and 1500 bp, approximately) as visualized in a 1.2% agarose gel. The lowest band (820 bp) was selected as a candidate for chitin synthase because most amplified regions from other fimgi so far exhibited similar sizes (600-750 bp). The selected fragment was extracted from the gel and cloned in the Hinc n site of pUC19. The derived plasmid and insert were designated ^\5C\9'PaCHS and PaCHS respectively. The plasmid pUC19-PaC/fS was digested by several restriction enzymes and was found to contain BamHl and HincU sites. Sequencing of PaCHS revealed two intron sequences and a total open reading frame of 200 amino acids. The derived polypeptide was compared with other related sequences from the EMBL database (Heidelberg, Germany) and was matched to 36 other fiilly or partially sequenced fimgal chitin synthase genes. The closest resemblance was with two genes (74.5% and 73.1% identity) from Rhizopus oligosporus. Southern hybridization with the cloned fragment as a probe to the PCR reaction showed a strong signal at the fragment selected for cloning and weaker signals at the other two fragments. Southern hybridization with partially digested Phascolomyces articulosus genomic DNA showed a single band. The amino acid sequence was compared with sequences from other chitin synthase gene classes using the CLUSTALW program. The chitin synthase fragment from Phascolomyces articulosus was initially grouped in class n along with chitin synthase fragments from Rhizopus oligosporus and Phycomyces blakesleeanus which also belong to the same class, Zygomycetes. Bootstrap analysis using the neighbor-joining method available by CLUSTALW verified such classification. Comparison of PaCHS revealed conservation of intron positions that are characteristic of chitin synthase gene fragments of zygomycetous fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in vitro investigation of some important factors controlling the activity of chitin synthase in cell-free extracts of two Mortierella species has been carried out. Mixed membrane fractions from mycelial homogenates of Mortierella candelabrum and Mortierella pusilla were found to catalyse the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine into an insoluble product characterized as chitin by its insolubility in weak acid and alkali, and the release of glucosamine and diacetylchitobiose on hydrolysis with a strong acid and chitinase, respectively. Apparent Km values for UDP-GlcNAc were 1.8 mM and 2.0 mM for M. pusilla and ~ candelabrum, respectively. Polyoxin D was found to be a very potent competitive inhibitor with values of the constant of inhibition, Ki' for both species about three orders of magnitude lower than theKm for UDP-GlcNAc. A divalent cation, Mg+2 , Mn+2 or Co+2 , was required for activity. N-acetylglucosamine, the monomer of chitin, stimulated the activity of the enzyme. The crude enzyme preparation of ~ candelabrum, unlike that of ~ pusilla, showed an absolute requirement for both Mg+2 and N-acetylglucosamine. Large differences in response to exogenous proteases were noted in the ratio of active to inactive chitin synthase of the two species. A fifteen fold or greater increase was obtained after treatment with acid protease (from Aspergillussaitoi) as compared to a two- to four-fold activation of the M. pusilla membrane preparation treated similarly. During storage at 4°C over 48 hours, an endogenous activation of chitin synthase of ~ pus ilIa was achieved, comparable to that obtained by exogenous protease treatment. The high speed supernatant of both species inhibited the chitin synthase activity of the mixed membrane fractions. The inhibitor of ~ pus ilIa was effective against the pre-activated enzyme whereas that of M. candelabrum inhibited the activated enzyme. Several possibilities are discussed as to the role of the different factors regulating the enzyme activity. The suggestion is made from the properties of chitin synthase in the two species that in vivo a delicate balance exists between the activation and inactivation of the enzyme which is responsible for the pattern of wall growth of each fungus.