964 resultados para bacteria genome nucleotide usage


Relevância:

30.00% 30.00%

Publicador:

Resumo:

研究背景与目的:近二十年来,抗生素的广泛使用以及一些不当应用导致临床上出现大量的耐药性病原菌,所以不易产生耐药性的抗菌肽就成为目前研究的热点。本课题组此前的研究表明无指盘臭蛙(Odorrana grahami)皮肤抗菌肽具有广谱抗菌活性,但对真核细胞没有毒性,因此有成为新型药物的潜力。本研究采用毕赤酵母真核表达系统来生物合成抗菌肽Odorgrin A和Odorgrin C,为大量获取抗菌肽资源提供技术支撑。 方法:依照Odorgrin A和C的氨基酸序列、采用酵母偏爱密码子分别设计并化学合成了相应的目的基因序列。目的片段从合成质粒上用Xho Ι和EcoR Ι双酶切下后,与经同样限制酶完全酶切pPIC9K载体所获得的两个大片段直接连接,并转化至大肠杆菌DH5α。用PCR扩增、酶切及测序检测,鉴定正确的重组质粒。提取大量表达载体pPIC9K - Odo A和C并使之线性化后经电击法分别转化毕赤酵母(Pichia pastoris)GS115宿主菌,用营养缺陷型筛选、遗传霉素抗性筛选、PCR扩增和测序检测,鉴定并筛选出对G418具高抗性的Odorgrin A和C重组酵母菌。用甲醇对之进行诱导表达,SDS - PAGE电泳及反相层析检测表达产物,并做抑菌活性检测。 成果:PCR扩增、酶切及测序等结果表明表达载体pPIC9K - Odo A和C构建成功。营养缺陷型筛选、遗传霉素抗性筛选、PCR扩增和测序等证实pPIC9K - Odo A和C已整合入酵母基因组中。SDS - PAGE电泳及反相层析结果表明抗菌肽Odorgrin A和C成功地获得了分泌表达。而抑菌活性实验则检测到部分阳性克隆菌诱导分泌表达的抗菌肽Odorgrin A和C都对测试菌的生长具有较高(>94%)的抑制率。 结论:无指盘臭蛙皮肤抗菌肽Odorgrin A和Odorgrin C基因的表达载体都构建成功,并且都在毕赤酵母系统中获得了成功表达。 Background & Objective: In the recent twenty years, a lot of pathogenic bacteria have come forth in clinic with durable trait derived from making use of and abusing the traditional antibiotics. Therefore, studying antimicrobial peptides, not be easy to be invalidated by durable bacteria, are becomimg popular and important. The skin antimicrobial peptides of Odorrana grahami with broad spectrum antibacterial activity and no toxicity to eukaryotic cell, discovered by previous research work of our workgroup, are looked forward to being potential medication. Pichia pastoris expressional system was used for biosynthesis antimicrobial peptides Odorgrin A and Odorgrin C in this study, for producing abundant antimicrobial peptides. Methods: The foreign fragments which included Odorgrin A or Odorgrin C gene according to their amino acid sequence respectively were synthesized based on the biased codon usage of yeast. The DNA fragments, obtained from the plasmids containing them by digested with Xho Ι and EcoR Ι, were directly ligated with the two bigger fragments obtained from the vector pPIC9K by digested with the same restriction enzymes. And then they were transformed into Escherichia coli DH5α to be selected and amplified positive colonies. The recombinants were testified by using PCR amplification, enzymes digestion and sequencing of the foreign fragment. After the expressional vector pPIC9K - Odo A and pPIC9K - Odo C were linearized, they were transformed into Pichia pastoris GS115 strain by the electroporation. Then the positive colonies which were of the highest geneticin resistant were selected through auxotrophic screening, genetic resistant screening, PCR amplification and sequencing of the inserted fragment. Methanol was used to induce the recombinant yeasts to express the foreign gene. SDS-PAGE electrophoresis, reversed phase chromatography and antibacterial activity experiment were used to testify the expressional products. Results: The evidences of PCR, enzymes digestion and sequence analysis confirmed that the expressional vector pPIC9K - Odo A and pPIC9K - Odo C have been constructed correctly. The results of auxotrophic screening, of genetic resistant screening, of PCR and sequencing of the foreign fragment showed that Odorgrin A and Odorgrin C gene have been homologous integrated with the Pichia pastoris genome. And it was also testified that antimicrobial peptides Odorgrin A and Odorgrin C have been expressed successfully by using SDS - PAGE electrophoresis, reversed phase chromatography and antibacterial activity experiment. Conclusion: The expressional vector of the skin antimicrobial peptides Odorgrin A and Odorgrin C gene of Odorrana grahami have been constructed correctly and both of the genes have been expressed successfully in Pichia pastoris system in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate and fast genotyping of single nucleotide polymorphisms (SNPs) is important in the human genome project. Here an automated fluorescent method that can rapidly and accurately genotype multiplex known SNPs was developed by using a homemade kit, which has lower cost but higher resolution than commercial kit. With this method, oncogene K-ras was investigated, four known SNPs of K-ras gene exon 1 in 31 coloerctal cancer patients were detected. Results indicate that mutations were present in 8(26%) of 31 patients, and most mutations were localized in codon 12. The presence of these mutations is thought to be a critical step and plays an important role in human colorectal carcinogenesisas. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria are an ancient group of gram-negative bacteria with strong genome size variation ranging from 1.6 to 9.1 Mb. Here, we first retrieved all the putative restriction-modification (RM) genes in the draft genome of Spirulina and then performed a range of comparative and bioinformatic analyses on RM genes from unicellular and filamentous cyanobacterial genomes. We have identified 6 gene clusters containing putative Type I RMs and 11 putative Type II RMs or the solitary methyltransferases (MTases). RT-PCR analysis reveals that 6 of 18 MTases are not expressed in Spirulina, whereas one hsdM gene, with a mutated cognate hsdS, was detected to be expressed. Our results indicate that the number of RM genes in filamentous cyanobacteria is significantly higher than in unicellular species, and this expansion of RM systems in filamentous cyanobacteria may be related to their wide range of ecological tolerance. Furthermore, a coevolutionary pattern is found between hsdM and hsdR, with a large number of site pairs positively or negatively correlated, indicating the functional importance of these pairing interactions between their tertiary structures. No evidence for positive selection is found for the majority of RMs, e. g., hsdM, hsdS, hsdR, and Type II restriction endonuclease gene families, while a group of MTases exhibit a remarkable signature of adaptive evolution. Sites and genes identified here to have been under positive selection would provide targets for further research on their structural and functional evaluations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria are an ancient group of gram-negative bacteria with strong genome size variation ranging from 1.6 to 9.1 Mb. Here, we first retrieved all the putative restriction-modification (RM) genes in the draft genome of Spirulina and then performed a range of comparative and bioinformatic analyses on RM genes from unicellular and filamentous cyanobacterial genomes. We have identified 6 gene clusters containing putative Type I RMs and 11 putative Type II RMs or the solitary methyltransferases (MTases). RT-PCR analysis reveals that 6 of 18 MTases are not expressed in Spirulina, whereas one hsdM gene, with a mutated cognate hsdS, was detected to be expressed. Our results indicate that the number of RM genes in filamentous cyanobacteria is significantly higher than in unicellular species, and this expansion of RM systems in filamentous cyanobacteria may be related to their wide range of ecological tolerance. Furthermore, a coevolutionary pattern is found between hsdM and hsdR, with a large number of site pairs positively or negatively correlated, indicating the functional importance of these pairing interactions between their tertiary structures. No evidence for positive selection is found for the majority of RMs, e. g., hsdM, hsdS, hsdR, and Type II restriction endonuclease gene families, while a group of MTases exhibit a remarkable signature of adaptive evolution. Sites and genes identified here to have been under positive selection would provide targets for further research on their structural and functional evaluations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through random sequencing, we found a total of 884000 base-pairs (bp) of random genomic sequences in the genome of Chinese shrimp (Fenneropenaeus chinensis). Using bio-soft Tandem Repeat Finder (TRF) software, 2159 tandem repeats were found, in which there were 1714 microsatellites and 445 minisatellites, accounting for 79.4% and 20.6% of repeat sequences, respectively. The cumulative length of repeat sequences was found to be 116685 bp, accounting for 13.2% of the total DNA sequence; the cumulative length of microsatellites occupied 9.78% of the total DNA sequence, and that of minisatellites occupied 3.42%. In decreasing order, the 20 most abundant repeat sequence classes were as follows: AT (557), AC (471), AG (274), AAT (92), A (56), AAG (28), ATC (27), ATAG (27), AGG (18), ACT (15), C (11), AAC (11), ACAT (11), CAGA (10), AGAA (9), AGGG (7), CAAA (7), CGCA (6), ATAA (6), AGAGAA (6). Dinucleotide repeats, not only in the aspect of the number, but also in cumulative length, were the preponderant repeat type. There were few classes and low copy numbers of repeat units of the pentanucleotide repeat type, which included only three classes: AGAGA, GAGGC and AAAGA. The classes and copy numbers of heptanucleotide, eleven-nucleotide and thirteen-nucleotide primer-number-composed repeats were distinctly less than that of repeat types beside them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA (His) gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete mitochondrial (mt) DNA sequence was determined for a ridgetail white prawn, Exopalaemon carinicauda Holthuis, 1950 (Crustacea: Decopoda: Palaemonidae). The mt genome is 15,730 bp in length, encoding a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which is typical for metazoans. The majority-strand consists of 33.6% A, 23.0% C, 13.4% G, and 30.0% T bases (AT skew = 0.057: GC skew = -0.264). A total of 1045 bp of non-coding nucleotides were observed in 16 intergenic regions,,including a major A+ T rich (79.7%) noncoding region (886 bp). A novel translocation of tRNA(Pro) and tRNA(Thr) was found when comparing this genome with the pancrustacean ground pattern indicating that gene order is not conserved among caridean mitochondria. Furthermore, the rate of Ka/Ks in 13 protein-coding genes between three caridean species is Much less than 1, which indicates a strong Purifying selection within this group. To investigate the phylogenetic relationship within Malacostraca, phylogenetic trees based oil Currently available malacostracan complete mitochondrial sequences were built with the maximum likelihood and Bayesian models. All analyses based oil nucleotide and amino acid data strongly support the monophyly of Decapoda. The Penaeidae, Reptantia, Caridea, and Meiura clades were also recovered as monophyletic groups with Strong Statistical Support. However, the phylogenetic relationships within Pleocyemata are unstable, as represented by the inclusion or exclusion of Caridea. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clare, A. and King R.D. (2003) Data mining the yeast genome in a lazy functional language. In Practical Aspects of Declarative Languages (PADL'03) (won Best/Most Practical Paper award).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Single nucleotide polymorphisms (SNPs) have been used extensively in genetics and epidemiology studies. Traditionally, SNPs that did not pass the Hardy-Weinberg equilibrium (HWE) test were excluded from these analyses. Many investigators have addressed possible causes for departure from HWE, including genotyping errors, population admixture and segmental duplication. Recent large-scale surveys have revealed abundant structural variations in the human genome, including copy number variations (CNVs). This suggests that a significant number of SNPs must be within these regions, which may cause deviation from HWE. Results We performed a Bayesian analysis on the potential effect of copy number variation, segmental duplication and genotyping errors on the behavior of SNPs. Our results suggest that copy number variation is a major factor of HWE violation for SNPs with a small minor allele frequency, when the sample size is large and the genotyping error rate is 0~1%. Conclusions Our study provides the posterior probability that a SNP falls in a CNV or a segmental duplication, given the observed allele frequency of the SNP, sample size and the significance level of HWE testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION:Subclinical atherosclerosis (SCA) measures in multiple arterial beds are heritable phenotypes that are associated with increased incidence of cardiovascular disease. We conducted a genome-wide association study (GWAS) for SCA measurements in the community-based Framingham Heart Study.METHODS:Over 100,000 single nucleotide polymorphisms (SNPs) were genotyped (Human 100K GeneChip, Affymetrix) in 1345 subjects from 310 families. We calculated sex-specific age-adjusted and multivariable-adjusted residuals in subjects tested for quantitative SCA phenotypes, including ankle-brachial index, coronary artery calcification and abdominal aortic calcification using multi-detector computed tomography, and carotid intimal medial thickness (IMT) using carotid ultrasonography. We evaluated associations of these phenotypes with 70,987 autosomal SNPs with minor allele frequency [greater than or equal to] 0.10, call rate [greater than or equal to] 80%, and Hardy-Weinberg p-value [greater than or equal to] 0.001 in samples ranging from 673 to 984 subjects, using linear regression with generalized estimating equations (GEE) methodology and family-based association testing (FBAT). Variance components LOD scores were also calculated.RESULTS:There was no association result meeting criteria for genome-wide significance, but our methods identified 11 SNPs with p < 10-5 by GEE and five SNPs with p < 10-5 by FBAT for multivariable-adjusted phenotypes. Among the associated variants were SNPs in or near genes that may be considered candidates for further study, such as rs1376877 (GEE p < 0.000001, located in ABI2) for maximum internal carotid artery IMT and rs4814615 (FBAT p = 0.000003, located in PCSK2) for maximum common carotid artery IMT. Modest significant associations were noted with various SCA phenotypes for variants in previously reported atherosclerosis candidate genes, including NOS3 and ESR1. Associations were also noted of a region on chromosome 9p21 with CAC phenotypes that confirm associations with coronary heart disease and CAC in two recently reported genome-wide association studies. In linkage analyses, several regions of genome-wide linkage were noted, confirming previously reported linkage of internal carotid artery IMT on chromosome 12. All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:The results from this GWAS generate hypotheses regarding several SNPs that may be associated with SCA phenotypes in multiple arterial beds. Given the number of tests conducted, subsequent independent replication in a staged approach is essential to identify genetic variants that may be implicated in atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND:The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.METHODS:Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests.RESULTS:The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 +/- 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency [greater than or equal to] 10%, genotype call rate [greater than or equal to] 80%, Hardy-Weinberg equilibrium p-value [greater than or equal to] 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall aims of this study were to investigate the differences between raw/farm milk and pasteurised milk with respect to potential immune modifying effects following consumption and investigate the bacterial composition of raw milk compared to pasteurised milk. Furthermore, in this thesis, panels of potential probiotic bacteria from the Bifidobacterium and Lactobacillus genera were investigated. The overall bacterial composition of raw milk was compared with pasteurised milk using samples obtained from commercial milk producers around Ireland using next generation sequencing technology (454 pyrosequencing). Here the presence of previously unrecognised and diverse bacterial populations in unpasteurised cow’s milk was identified. Futhermore the bacterial content of pasteurised milk was found to be more diverse than previously thought. The global response of the adenocarcinoma cell line HT-29 to raw milk and pasteurised milk exposures were also characterised using whole genome microarray technology. Over one thousand differentially expressed genes were identified which were found to be involved in a plethora of cellular functions. Interestingly a reduction in immune related activity (e.g. Major histocompatability complex class II signalling and T and B cell proliferation) was identified in cells exposed to pasteurised milk compared with raw milk exposures. Further studies comparing human cell response to raw versus pasteurised milk was performed using peripheral blood mononuclear cells (PBMC) from healthy donors. A reduction in CD14 was identified following raw milk exposures compared with pasteurised milk and the pattern of cytokine production may indicate that gram positive bacteria in the raw milk were contributing to the differences in the cellular response to raw versus pasteurised milk. Panels of potentially probiotic bacteria (comprising of lactobacilli and bifidobacteria) were further assessed for immunomodulatory capabilities using cell culture based models. Gene expression and cytokine production were used to evaluate stimulated and unstimulated (LPS) cellular responses as well as interaction mechanisms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spectrum producers were identified through 16S rRNA sequencing with the majority of the population comprising Lactobacillus plantarum isolates. Six broad-spectrum isolates were consequently characterised. Pedicococcus pentosaceous 54 displayed potent anti-mould capabilities in pear, plum and grape models and may represent an ideal candidate for use in the beverage industry. Two antifungal Lb. plantarum isolates were assessed for their technological robustness and potential as biopreservatives in refrigerated foods. Lb. plantarum 16 and 62 displayed high levels of tolerance to freeze-drying, low temperature exposure and high salt concentrations. Both lactobacilli were introduced as supplements into orange juice to retard the growth of the spoilage yeast Rhodotorula mucilaginosa. Furthermore the isolates were applied as adjuncts in yoghurt production to successfully reduce yeast growth. Lb. plantarum 16 proved to be the optimal inhibitor of yeast growth in both food matrices. To date there is limited information available describing the mechanisms behind fungal inhibition by LAB. The effects of concentrated cell-free supernatant (cCFS), derived from Lb. plantarum 16, on the growth of two food-associated moulds was assessed microscopically. cCFS completely inhibited spore, germ tube and hyphal development. A transcriptomic approach was undertaken to determine the impact of antifungal activity on Aspergillus fumigatus Af293. A variety of genes, most notably those involved in cellular metabolism, were found to have their transcription modulated in response to cCFS which is indicative of global cellular shutdown. This study provides the first insights into the molecular targets of antifungal compounds produced by LAB. The genome sequence of the steep water isolate Lb. plantarum 16 was determined. The complete genome of Lb. plantarum16 consists of a single circular chromosome of 3,044,738 base pairs with an average G+C content of 44.74 % in addition to eight plasmids. The genome represents the smallest of this species to date while harbouring the largest plasmid complement. Some features of particular interest include the presence of two prophages, an interrupted plantaricin cluster and a chromosomal and plasmid encoded polysaccharide cluster. The sequence presented here provides a suitable platform for future studies elucidating the mechanisms governing antifungal production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: There is considerable interest in the development of methods to efficiently identify all coding variants present in large sample sets of humans. There are three approaches possible: whole-genome sequencing, whole-exome sequencing using exon capture methods, and RNA-Seq. While whole-genome sequencing is the most complete, it remains sufficiently expensive that cost effective alternatives are important. RESULTS: Here we provide a systematic exploration of how well RNA-Seq can identify human coding variants by comparing variants identified through high coverage whole-genome sequencing to those identified by high coverage RNA-Seq in the same individual. This comparison allowed us to directly evaluate the sensitivity and specificity of RNA-Seq in identifying coding variants, and to evaluate how key parameters such as the degree of coverage and the expression levels of genes interact to influence performance. We find that although only 40% of exonic variants identified by whole genome sequencing were captured using RNA-Seq; this number rose to 81% when concentrating on genes known to be well-expressed in the source tissue. We also find that a high false positive rate can be problematic when working with RNA-Seq data, especially at higher levels of coverage. CONCLUSIONS: We conclude that as long as a tissue relevant to the trait under study is available and suitable quality control screens are implemented, RNA-Seq is a fast and inexpensive alternative approach for finding coding variants in genes with sufficiently high expression levels.