986 resultados para atmospheric trace gases
Resumo:
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.
Resumo:
The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.
Resumo:
The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.
Resumo:
A highly sensitive and accurate method based on the precolumn derivatization of bile acids (BA) with a high ionization efficiency labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-benzenesulfonate (BDEBS) coupled with LC/MS has been developed. After derivatization, BA molecules introduced a weak basic nitrogen atom into the molecular core structure that was readily ionized in commonly used acidic HPLC mobile phases. Derivatives were sufficiently stable to be efficiently analyzed by atmospheric pressure chemical ionization (APCI)-MS/MS in positive-ion mode. The MS/MS spectra of BA derivatives showed an intense protonated molecular ion at m/z [M + H](+). The collision-induced dissociation of the molecular ion produced fragment ions at [MH - H2O](+), [MH - 2H(2)O](+), [MH - 3H(2)O](+). The characteristic fragment ions were at m/z 320.8, 262.8, and 243.7 corresponding to a cleavage of N - CO, O - CO, and C - OCC, respectively, and bonds of derivatized molecules. The selected reaction monitoring, based on the m/z [M + H]+ -> [MH - H2O](+), [MH - H2O](+), [MH - 2H(2)O](+), [MH-3H(2)O](+), 320.8, 262.8, and 243.7 transitions, was highly specific for the BA derivatives. The LODs for APCI in a positive-ion mode, at an S/N of 5, were 44.36-153.6 fmol. The validation results showed high accuracy in the range of 93-107% and the mean interday precision for all standards was < 15% at broad linear dynamic ranges (0.0244-25nmol/mL). Good linear responses were observed with coefficients of > 0.9935 in APCI/MS detection. Therefore, the facile BDEBS derivatization coupled with mass spectrometric analysis allowed the development of a highly sensitive and specific method for the quantitation of trace levels of the free and glycine-conjugated BA from human serum samples.
Resumo:
A novel spectroscopic method, incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), has been modified and extended to measure absorption spectra in the near-ultraviolet with high sensitivity. The near-ultraviolet region extends from 300 to 400 nm and is particularly important in tropospheric photochemistry; absorption of near-UV light can also be exploited for sensitive trace gas measurements of several key atmospheric constituents. In this work, several IBBCEAS instruments were developed to record reference spectra and to measure trace gas concentrations in the laboratory and field. An IBBCEAS instrument was coupled to a flow cell for measuring very weak absorption spectra between 335 and 375 nm. The instrument was validated against the literature absorption spectrum of SO2. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably owing to the extremely weak absorption. The instrument was also applied to quantifying low concentrations of the short-lived radical, BrO, in the presence of strong absorption by Br2 and O3. A different IBBCEAS system was adapted to a 4 m3 atmosphere simulation chamber to record the absorption cross-sections of several low vapour pressure compounds, which are otherwise difficult to measure. Absorption cross-sections of benzaldehyde and the more volatile alkyl nitrites agree well with previous spectra; on this basis, the cross-sections of several nitrophenols are reported for the first time. In addition, the instrument was also used to study the optical properties of secondary organic aerosol formed following the photooxidation of isoprene. An extractive IBBCEAS instrument was developed for detecting HONO and NO2 and had a sensitivity of about 10-9 cm-1. This instrument participated in a major international intercomparison of HONO and NO2 measurements held in the EUPHORE simulation chamber in Valencia, Spain, and results from that campaign are also reported here.
Resumo:
In the ancient and acidic Ultisol soils of the Southern Piedmont, USA, we studied changes in trace element biogeochemistry over four decades, a period during which formerly cultivated cotton fields were planted with pine seedlings that grew into mature forest stands. In 16 permanent plots, we estimated 40-year accumulations of trace elements in forest biomass and O horizons (between 1957 and 1997), and changes in bioavailable soil fractions indexed by extractions of 0.05 mol/L HCl and 0.2 mol/L acid ammonium oxalate (AAO). Element accumulations in 40-year tree biomass plus O horizons totaled 0.9, 2.9, 4.8, 49.6, and 501.3 kg/ha for Cu, B, Zn, Mn, and Fe, respectively. In response to this forest development, samples of the upper 0.6-m of mineral soil archived in 1962 and 1997 followed one of three patterns. (1) Extractable B and Mn were significantly depleted, by -4.1 and -57.7 kg/ha with AAO, depletions comparable to accumulations in biomass plus O horizons, 2.9 and 49.6 kg/ha, respectively. Tree uptake of B and Mn from mineral soil greatly outpaced resupplies from atmospheric deposition, mineral weathering, and deep-root uptake. (2) Extractable Zn and Cu changed little during forest growth, indicating that nutrient resupplies kept pace with accumulations by the aggrading forest. (3) Oxalate-extractable Fe increased substantially during forest growth, by 275.8 kg/ha, about 10-fold more than accumulations in tree biomass (28.7 kg/ha). The large increases in AAO-extractable Fe in surficial 0.35-m mineral soils were accompanied by substantial accretions of Fe in the forest's O horizon, by 473 kg/ha, amounts that dwarfed inputs via litterfall and canopy throughfall, indicating that forest Fe cycling is qualitatively different from that of other macro- and micronutrients. Bioturbation of surficial forest soil layers cannot account for these fractions and transformations of Fe, and we hypothesize that the secondary forest's large inputs of organic additions over four decades has fundamentally altered soil Fe oxides, potentially altering the bioavailability and retention of macro- and micronutrients, contaminants, and organic matter itself. The wide range of responses among the ecosystem's trace elements illustrates the great dynamics of the soil system over time scales of decades.
Resumo:
Space-borne thermal infrared instruments working in the nadir geometry are providing spectroscopic measurements of species that impact on the chemical composition of the atmosphere and on the climate forcing: H2O, CO2, N2O, CH4, CFCs, O3, and CO. The atmospheric abundances obtained from the analysis of IMG/ADEOS measurements are discussed in order to demonstrate the potential scientific return to be expected from future missions using advanced infrared nadir sounders. Some strengths and limitations of passive infrared remote sensing from space are illustrated. © 2003 European Geosciences Union.
Resumo:
In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a similar to 10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at similar to 5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.
Resumo:
Atmospheric inputs of mineral dust supply iron and other trace metals to the remote ocean and can influence the marine carbon cycle due to iron's role as a potentially limiting micronutrient. Dust generation, transport, and deposition are highly heterogeneous, and there are very few remote marine locations where dust concentrations and chemistry (e.g., iron solubility) are routinely monitored. Here we use aerosol and rainwater samples collected during 10 large-scale research cruises to estimate the atmospheric input of iron, aluminum, and manganese to four broad regions of the Atlantic Ocean over two 3 month periods for the years 2001–2005. We estimate total inputs of these metals to our study regions to be 4.2, 17, and 0.27 Gmol in April–June and 4.9, 14, and 0.19 Gmol in September–November, respectively. Inputs were highest in regions of high rainfall (the intertropical convergence zone and South Atlantic storm track), and rainfall contributed higher proportions of total input to wetter regions. By combining input estimates for total and soluble metals for these time periods, we calculated overall percentage solubilities for each metal that account for the contributions from both wet and dry depositions and the relative contributions from different aerosol types. Calculated solubilities were in the range 2.4%–9.1% for iron, 6.1%–15% for aluminum, and 54%–73% for manganese. We discuss sources of uncertainty in our estimates and compare our results to some recent estimates of atmospheric iron input to the Atlantic.
Resumo:
Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (t(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to t(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of e(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of ?(13)C ~ -13‰ (HCFC-22), ?(13)C ~ -35‰ (CFC-12) and ?(13)C ~ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation.
Resumo:
Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6] - a room temperature ionic liquid - are reported as a function of temperature between 283 and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble and hydrogen is the least soluble of the gases studied with mole fraction solubilities of the order of 10-2 and 10-4, respectively. All the mole fraction solubilities decrease with temperature except for hydrogen for which a maximum is observed at temperatures close to 310 K. From the variation of solubility, expressed as Henry's law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is better than ±1%. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3- methylimidazolium tetrafluoroborate, [bmim][BF4] - a room temperature ionic liquid - are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10-2. Ethane and methane are one order of magnitude more soluble than the other five gases that have mole fraction solubilities of the order of 10-4. Hydrogen is the less soluble of the gaseous solutes studied. From the variation of solubility, expressed as Henry's law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations is of 1%. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Globally lakes bury and remineralise significant quantities of terrestrial C, and the associated flux of terrestrial C strongly influences their functioning. Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry and terrestrial C export1 and hence lake ecology with potential feedbacks for regional and global C cycling. C and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food webs. The approach relies on different 13C fractionation in aquatic and terrestrial primary producers, but also that inorganic C demands of aquatic primary producers are partly met by 13C depleted C from respiration of terrestrial C, and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contributions of old and recently fixed terrestrial C. Natural abundance 14C can be used as an additional biomarker to untangle riverine food webs2 where aquatic and terrestrial δ 13C overlap, but may also be valuable for examining the age and origin of C in the lake. Primary production in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. As such, 14C can be used to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘fossil’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic alkaline lake. Temporal and spatial variation was evident in DIC, DOC and POM C isotopes with implications for the fluctuation in terrestrial export processes. Ramped pyrolysis of lake surface sediment indicates the burial of two C components. 14C activity (507 ± 30 BP) of sediment combusted at 400˚C was consistent with algal values and younger than bulk sediment values (1097 ± 30 BP). The sample was subsequently combusted at 850˚C, yielding 14C values (1471 ± 30 BP) older than the bulk sediment age, suggesting that fossil terrestrial carbon is also buried in the sediment. Stable isotopes in the food web indicate that terrestrial organic C is also utilised by lake organisms. High winter δ 15N values in calanoid zooplankton (δ 15N = 24%¸) relative to phytoplankton and POM (δ 15N = 6h and 12h respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from an inflowing river (75 ± 24 BP), not phytoplankton (367 ± 70 BP). Summer calanoid δ 13C, δ 15N and 14C (345 ± 80 BP) indicate greater reliance on phytoplankton.
1 Monteith, D.T et al., (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450:537-535
2 Caraco, N., et al.,(2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology,91: 2385-2393.
Resumo:
The renewed concern in assessing risks and consequences from technological hazards in industrial and urban areas continues emphasizing the development of local-scale consequence analysis (CA) modelling tools able to predict shortterm pollution episodes and exposure effects on humans and the environment in case of accident with hazardous gases (hazmat). In this context, the main objective of this thesis is the development and validation of the EFfects of Released Hazardous gAses (EFRHA) model. This modelling tool is designed to simulate the outflow and atmospheric dispersion of heavy and passive hazmat gases in complex and build-up areas, and to estimate the exposure consequences of short-term pollution episodes in accordance to regulatory/safety threshold limits. Five main modules comprising up-to-date methods constitute the model: meteorological, terrain, source term, dispersion, and effects modules. Different initial physical states accident scenarios can be examined. Considered the main core of the developed tool, the dispersion module comprises a shallow layer modelling approach capable to account the main influence of obstacles during the hazmat gas dispersion phenomena. Model validation includes qualitative and quantitative analyses of main outputs by the comparison of modelled results against measurements and/or modelled databases. The preliminary analysis of meteorological and source term modules against modelled outputs from extensively validated models shows the consistent description of ambient conditions and the variation of the hazmat gas release. Dispersion is compared against measurements observations in obstructed and unobstructed areas for different release and dispersion scenarios. From the performance validation exercise, acceptable agreement was obtained, showing the reasonable numerical representation of measured features. In general, quality metrics are within or close to the acceptance limits recommended for ‘non-CFD models’, demonstrating its capability to reasonably predict hazmat gases accidental release and atmospheric dispersion in industrial and urban areas. EFRHA model was also applied to a particular case study, the Estarreja Chemical Complex (ECC), for a set of accidental release scenarios within a CA scope. The results show the magnitude of potential effects on the surrounding populated area and influence of the type of accident and the environment on the main outputs. Overall the present thesis shows that EFRHA model can be used as a straightforward tool to support CA studies in the scope of training and planning, but also, to support decision and emergency response in case of hazmat gases accidental release in industrial and built-up areas.