847 resultados para asymptotically hyperbolic
Resumo:
Cumulative arrays have played an important role in the early development of the secret sharing theory. They have not been subject to extensive study so far, as the secret sharing schemes built on them generally result in much larger sizes of shares, when compared with other conventional approaches. Recent works in threshold cryptography show that cumulative arrays may be the appropriate building blocks in non-homomorphic threshold cryptosystems where the conventional secret sharing methods are generally of no use. In this paper we study several extensions of cumulative arrays and show that some of these extensions significantly improve the performance of conventional cumulative arrays. In particular, we derive bounds on generalised cumulative arrays and show that the constructions based on perfect hash families are asymptotically optimal. We also introduce the concept of ramp perfect hash families as a generalisation of perfect hash families for the study of ramp secret sharing schemes and ramp cumulative arrays.
Resumo:
The quick detection of an abrupt unknown change in the conditional distribution of a dependent stochastic process has numerous applications. In this paper, we pose a minimax robust quickest change detection problem for cases where there is uncertainty about the post-change conditional distribution. Our minimax robust formulation is based on the popular Lorden criteria of optimal quickest change detection. Under a condition on the set of possible post-change distributions, we show that the widely known cumulative sum (CUSUM) rule is asymptotically minimax robust under our Lorden minimax robust formulation as a false alarm constraint becomes more strict. We also establish general asymptotic bounds on the detection delay of misspecified CUSUM rules (i.e. CUSUM rules that are designed with post- change distributions that differ from those of the observed sequence). We exploit these bounds to compare the delay performance of asymptotically minimax robust, asymptotically optimal, and other misspecified CUSUM rules. In simulation examples, we illustrate that asymptotically minimax robust CUSUM rules can provide better detection delay performance at greatly reduced computation effort compared to competing generalised likelihood ratio procedures.
Resumo:
Pseudorandom Generators (PRGs) based on the RSA inversion (one-wayness) problem have been extensively studied in the literature over the last 25 years. These generators have the attractive feature of provable pseudorandomness security assuming the hardness of the RSA inversion problem. However, despite extensive study, the most efficient provably secure RSA-based generators output asymptotically only at most O(logn) bits per multiply modulo an RSA modulus of bitlength n, and hence are too slow to be used in many practical applications. To bring theory closer to practice, we present a simple modification to the proof of security by Fischlin and Schnorr of an RSA-based PRG, which shows that one can obtain an RSA-based PRG which outputs Ω(n) bits per multiply and has provable pseudorandomness security assuming the hardness of a well-studied variant of the RSA inversion problem, where a constant fraction of the plaintext bits are given. Our result gives a positive answer to an open question posed by Gennaro (J. of Cryptology, 2005) regarding finding a PRG beating the rate O(logn) bits per multiply at the cost of a reasonable assumption on RSA inversion.
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.
Resumo:
In this paper, we propose a risk-sensitive approach to parameter estimation for hidden Markov models (HMMs). The parameter estimation approach considered exploits estimation of various functions of the state, based on model estimates. We propose certain practical suboptimal risk-sensitive filters to estimate the various functions of the state during transients, rather than optimal risk-neutral filters as in earlier studies. The estimates are asymptotically optimal, if asymptotically risk neutral, and can give significantly improved transient performance, which is a very desirable objective for certain engineering applications. To demonstrate the improvement in estimation simulation studies are presented that compare parameter estimation based on risk-sensitive filters with estimation based on risk-neutral filters.
Resumo:
We study the dynamics of front solutions in a three-component reaction–diffusion system via a combination of geometric singular perturbation theory, Evans function analysis, and center manifold reduction. The reduced system exhibits a surprisingly complicated bifurcation structure including a butterfly catastrophe. Our results shed light on numerically observed accelerations and oscillations and pave the way for the analysis of front interactions in a parameter regime where the essential spectrum of a single front approaches the imaginary axis asymptotically.
Resumo:
In this paper, the axial performance of two heavily instrumented barrette piles, with and without grouting, socket into gravel layer in Taipei are evaluated based on the results of pile load tests. Both piles are 44 m long with the same dimension of 0.8 by 2.7 m, installed by hydraulic long bucket. One of the piles with toe grouting was socket 6 m into gravel layer and the other pile without toe grouting was socket 3 m into gravel layer. The load versus displacement relationships at pile head, the t-z curves of upper soil layers and of bottom gravel layer, and the tip resistance versus displacement relationships are important concerns and are presented in the paper. The t-z curves interpreted from the measured data along depth are also simulated by the hyperbolic model.
Resumo:
In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.
Resumo:
A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6 ≤ N ≤ 94) that optimized a spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols.
Resumo:
Studies on the swelling behaviour of mixtures of bentonite clay and nonswelling coarser fractions of different sizes and shapes reveal that observed swelling occurs only after the voids of the nonswelling particles are filled up with swollen clay particles. The magnitude of the swell within the voids, called intervoid swelling is large when the size and percentage of the nonswelling coarser fraction is large. The observable swell, after intervoid swelling, is called primary swelling and follows a rectangular hyperbolic relationship with time. The total swell per gram of the clay decreases with an increase in the size of the nonswelling fraction and with a decrease in the percentage of swelling clay. Time-swell relationships show that swelling continues to occur for a long time after the primary swelling, and this is called secondary swelling.
Resumo:
The new furnace at the Materials Characterization by X-ray Diffraction beamline at Elettra has been designed for powder diffraction measurements at high temperature (up to 1373 K at the present state). Around the measurement region the geometry of the radiative heating element assures a negligible temperature gradient along the capillary and can accommodate either powder samples in capillary or small flat samples. A double capillary holder allows flow-through of gas in the inner sample capillary while the outer one serves as the reaction chamber. The furnace is coupled to a translating curved imaging-plate detector, allowing the collection of diffraction patterns up to 2[theta] [asymptotically equal to] 130°.
Resumo:
This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.
Resumo:
For clustered survival data, the traditional Gehan-type estimator is asymptotically equivalent to using only the between-cluster ranks, and the within-cluster ranks are ignored. The contribution of this paper is two fold: - (i) incorporating within-cluster ranks in censored data analysis, and; - (ii) applying the induced smoothing of Brown and Wang (2005, Biometrika) for computational convenience. Asymptotic properties of the resulting estimating functions are given. We also carry out numerical studies to assess the performance of the proposed approach and conclude that the proposed approach can lead to much improved estimators when strong clustering effects exist. A dataset from a litter-matched tumorigenesis experiment is used for illustration.
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
Consider a general regression model with an arbitrary and unknown link function and a stochastic selection variable that determines whether the outcome variable is observable or missing. The paper proposes U-statistics that are based on kernel functions as estimators for the directions of the parameter vectors in the link function and the selection equation, and shows that these estimators are consistent and asymptotically normal.