998 resultados para associated polynomials
Resumo:
Background It is well established that COMT is a strong candidate gene for substance use disorder and schizophrenia. Recently we identified two SNPs in COMT (rs4680 and rs165774) that are associated with schizophrenia in an Australian cohort. Individuals with schizophrenia were more than twice as likely to carry the GG genotype compared to the AA genotype for both the rs165774 and rs4680 SNPs. Association of both rs4680 and rs165774 with substance dependence, a common comorbidity of schizophrenia has not been investigated. Methods To determine whether COMT is important in substance dependence, rs165774 and rs4680 were genotyped and haplotyped in patients with nicotine, alcohol and opiate dependence. Results The rs165774 SNP was associated with alcohol dependence. However, it was not associated with nicotine or opiate dependence. Individuals with alcohol dependence were more than twice as likely to carry the GG or AG genotypes compared to the AA genotype, indicating a dominant mode of inheritance. The rs4680 SNP showed a weak association with alcohol dependence at the allele level that did not reach significance at the genotype level but it was not associated with nicotine or opiate dependence. Analysis of rs165774/rs4680 haplotypes also revealed association with alcohol dependence with the G/G haplotype being almost 1.5 times more common in alcohol-dependent cases. Conclusions Our study provides further support for the importance of the COMT in alcohol dependence in addition to schizophrenia. It is possible that the rs165774 SNP, in combination with rs4680, results in a common molecular variant of COMT that contributes to schizophrenia and alcohol dependence susceptibility. This is potentially important for future studies of comorbidity. As our participant numbers are limited our observations should be viewed with caution until they are independently replicated.
Genome-wide association study identifies a common variant associated with risk of endometrial cancer
Resumo:
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis.
Resumo:
Overweight and obesity are strongly associated with endometrial cancer. Several independent genome-wide association studies recently identified two common polymorphisms, FTO rs9939609 and MC4R rs17782313, that are linked to increased body weight and obesity. We examined the association of FTO rs9939609 and MC4R rs17782313 with endometrial cancer risk in a pooled analysis of nine case-control studies within the Epidemiology of Endometrial Cancer Consortium (E2C2). This analysis included 3601 non-Hispanic white women with histologically-confirmed endometrial carcinoma and 5275 frequency-matched controls. Unconditional logistic regression models were used to assess the relation of FTO rs9939609 and MC4R rs17782313 genotypes to the risk of endometrial cancer. Among control women, both the FTO rs9939609 A and MC4R rs17782313 C alleles were associated with a 16% increased risk of being overweight (p = 0.001 and p = 0.004, respectively). In case-control analyses, carriers of the FTO rs9939609 AA genotype were at increased risk of endometrial carcinoma compared to women with the TT genotype [odds ratio (OR) = 1.17; 95% confidence interval (CI): 1.03–1.32, p = 0.01]. However, this association was no longer apparent after adjusting for body mass index (BMI), suggesting mediation of the gene-disease effect through body weight. The MC4R rs17782313 polymorphism was not related to endometrial cancer risk (per allele OR = 0.98; 95% CI: 0.91–1.06; p = 0.68). FTO rs9939609 is a susceptibility marker for white non-Hispanic women at higher risk of endometrial cancer. Although FTO rs9939609 alone might have limited clinical or public health significance for identifying women at high risk for endometrial cancer beyond that of excess body weight, further investigation of obesity-related genetic markers might help to identify the pathways that influence endometrial carcinogenesis.
Resumo:
Enterococci are versatile Gram-positive bacteria that can survive under extreme conditions. Most enterococci are non-virulent and found in the gastrointestinal tract of humans and animals. Other strains are opportunistic pathogens that contribute to a large number of nosocomial infections globally. Epidemiological studies demonstrated a direct relationship between the density of enterococci in surface waters and the risk of swimmer-associated gastroenteritis. The distribution of infectious enterococcal strains from the hospital environment or other sources to environmental water bodies through sewage discharge or other means, could increase the prevalence of these strains in the human population. Environmental water quality studies may benefit from focusing on a subset of Enterococcus spp. that are consistently associated with sources of faecal pollution such as domestic sewage, rather than testing for the entire genus. E. faecalis and E. faecium are potentially good focal species for such studies, as they have been consistently identified as the dominant Enterococcus spp. in human faeces and sewage. On the other hand enterococcal infections are predominantly caused by E. faecalis and E. faecium. The characterisation of E. faecalis and E. faecium is important in studying their population structures, particularly in environmental samples. In developing and implementing rapid, robust molecular genotyping techniques, it is possible to more accurately establish the relationship between human and environmental enterococci. Of particular importance, is to determine the distribution of high risk enterococcal clonal complexes, such as E. faecium clonal complex 17 and E. faecalis clonal complexes 2 and 9 in recreational waters. These clonal complexes are recognized as particularly pathogenic enterococcal genotypes that cause severe disease in humans globally. The Pimpama-Coomera watershed is located in South East Queensland, Australia and was investigated in this study mainly because it is used intensively for agriculture and recreational purposes and has a strong anthropogenic impact. The primary aim of this study was to develop novel, universally applicable, robust, rapid and cost effective genotyping methods which are likely to yield more definitive results for the routine monitoring of E. faecalis and E. faecium, particularly in environmental water sources. To fullfill this aim, new genotyping methods were developed based on the interrogation of highly informative single nucleotide polymorphisms (SNPs) located in housekeeping genes of both E. faecalis and E. faecium. SNP genotyping was successfully applied in field investigations of the Coomera watershed, South-East Queensland, Australia. E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles respectively. This study showed the high longitudinal diversity of E. faecalis and E. faecium over a period of two years, and both human-related and human-specific SNP profiles were identified. Furthermore, 4.25% of E. faecium strains isolated from water was found to correspond to the important clonal complex-17 (CC17). Strains that belong to CC17 cause the majority of hospital outbreaks and clinical infections globally. Of the six sampling sites of the Coomera River, Paradise Point had the highest number of human-related and human-specific E. faecalis and E. faecium SNP profiles. The secondary aim of this study was to determine the antibiotic-resistance profiles and virulence traits associated with environmental E. faecalis and E. faecium isolates compared to human pathogenic E. faecalis and E. faecium isolates. This was performed to predict the potential health risks associated with coming into contact with these strains in the Coomera watershed. In general, clinical isolates were found to be more resistant to all the antibiotics tested compared to water isolates and they harbored more virulence traits. Multi-drug resistance was more prevalent in clinical isolates (71.18% of E. faecalis and 70.3 % of E. faecium) compared to water isolates (only 5.66 % E. faecium). However, tetracycline, gentamicin, ciprofloxacin and ampicillin resistance was observed in water isolates. The virulence gene esp was the most prevalent virulence determinant observed in clinical isolates (67.79% of E. faecalis and 70.37 % of E. faecium), and this gene has been described as a human-specific marker used for microbial source tracking (MST). The presence of esp in water isolates (16.36% of E. faecalis and 19.14% of E. faecium) could be indicative of human faecal contamination in these waterways. Finally, in order to compare overall gene expression between environmental and clinical strains of E. faecalis, a comparative gene hybridization study was performed. The results of this investigation clearly demonstrated the up-regulation of genes associated with pathogenicity in E. faecalis isolated from water. The expression study was performed at physiological temperatures relative to ambient temperatures. The up-regulation of virulence genes demonstrates that environmental strains of E. faecalis can pose an increased health risk which can lead to serious disease, particularly if these strains belong to the virulent CC17 group. The genotyping techniques developed in this study not only provide a rapid, robust and highly discriminatory tool to characterize E. faecalis and E. faecium, but also enables the efficient identification of virulent enterococci that are distributed in environmental water sources.
Resumo:
BACKGROUND: Malnutrition, and poor intake during hospitalisation, are common in older medical patients. Better understanding of patient-specific factors associated with poor intake may inform nutritional interventions. AIMS: To measure the proportion of older medical patients with inadequate nutritional intake, and identify patient-related factors associated with this outcome. METHODS: Prospective cohort study enrolling consecutive consenting medical inpatients aged 65 years or older. Primary outcome was energy intake less than resting energy expenditure estimated using weight-based equations. Energy intake was calculated for a single day using direct observation of plate waste. Explanatory variables included age, gender, number of co-morbidities, number of medications, diagnosis, usual residence, nutritional status, functional and cognitive impairment, depressive symptoms, poor appetite, poor dentition, and dysphagia. RESULTS: Of 134 participants (mean age 80 years, 51% female), only 41% met estimated resting energy requirements. Mean energy intake was 1220 kcal/day (SD 440), or 18.1 kcal/kg/day. Factors associated with inadequate energy intake in multivariate analysis were poor appetite, higher BMI, diagnosis of infection or cancer, delirium and need for assistance with feeding. CONCLUSIONS: Inadequate nutritional intake is common, and patient factors contributing to poor intake need to be considered in nutritional interventions.
Resumo:
Aim: Children with Down syndrome have been identified as having difficulty delaying gratification when compared to mental age matched children who are developing typically. This study investigated the association between individual characteristics hypopthesized to be associated with ability to delay as well as the strategies children used in a waiting task. Method: Thirty-two children with Down syndrome and 50 typically developing children matched for mental age completed the tasks. Observations of their behaviour while waiting were video-recorded for later analysis. In addition, parents completed questionnaires with respect to their child’s personality and behaviour. Results: Children with Down syndrome were significantly less able to delay gratification than the comparison group. Different patterns of association were found for the two groups between the observational and questionnaire measures and delay time. Conclusions: Children with Down syndrome have greater difficulty delaying gratification than would be predicted on the basis of their mental age. The contributions to delay appear to differ from those for typically developing children and these differences need to be considered when planning interventions for developing this skill
Resumo:
Objective Factors associated with the development of hallux valgus (HV) are multifactorial and remain unclear. The objective of this systematic review and meta-analysis was to investigate characteristics of foot structure and footwear associated with HV. Design Electronic databases (Medline, Embase, and CINAHL) were searched to December 2010. Cross-sectional studies with a valid definition of HV and a non-HV comparison group were included. Two independent investigators quality rated all included papers. Effect sizes and 95% confidence intervals (CIs) were calculated (standardized mean differences (SMDs) for continuous data and risk ratios (RRs) for dichotomous data). Where studies were homogeneous, pooling of SMDs was conducted using random effects models. Results A total of 37 papers (34 unique studies) were quality rated. After exclusion of studies without reported measurement reliability for associated factors, data were extracted and analysed from 16 studies reporting results for 45 different factors. Significant factors included: greater first intermetatarsal angle (pooled SMD = 1.5, CI: 0.88–2.1), longer first metatarsal (pooled SMD = 1.0, CI: 0.48–1.6), round first metatarsal head (RR: 3.1–5.4), and lateral sesamoid displacement (RR: 5.1–5.5). Results for clinical factors (e.g., first ray mobility, pes planus, footwear) were less conclusive regarding their association with HV. Conclusions Although conclusions regarding causality cannot be made from cross-sectional studies, this systematic review highlights important factors to monitor in HV assessment and management. Further studies with rigorous methodology are warranted to investigate clinical factors associated with HV.
Resumo:
The 12 to 13 July 2003 andesite lava dome collapse at the Soufrière Hills volcano, Montserrat, provides the first opportunity to document comprehensively both the sub-aerial and submarine sequence of events for an eruption. Numerous pyroclastic flows entered the ocean during the collapse, depositing approximately 90% of the total material into the submarine environment. During peak collapse conditions, as the main flow penetrated the air–ocean interface, phreatic explosions were observed and a surge cloud decoupled from the main flow body to travel 2 to 3 km over the ocean surface before settling. The bulk of the flow was submerged and rapidly mixed with sea water forming a water-saturated mass flow. Efficient sorting and physical differentiation occurred within the flow before initial deposition at 500 m water depth. The coarsest components (∼60% of the total volume) were deposited proximally from a dense granular flow, while the finer components (∼40%) were efficiently elutriated into the overlying part of the flow, which evolved into a far-reaching turbidity current.
Resumo:
With the emergence of Unmanned Aircraft Systems (UAS) there is a growing need for safety standards and regulatory frameworks to manage the risks associated with their operations. The primary driver for airworthiness regulations (i.e., those governing the design, manufacture, maintenance and operation of UAS) are the risks presented to people in the regions overflown by the aircraft. Models characterising the nature of these risks are needed to inform the development of airworthiness regulations. The output from these models should include measures of the collective, individual and societal risk. A brief review of these measures is provided. Based on the review, it was determined that the model of the operation of an UAS over inhabited areas must be capable of describing the distribution of possible impact locations, given a failure at a particular point in the flight plan. Existing models either do not take the impact distribution into consideration, or propose complex and computationally expensive methods for its calculation. A computationally efficient approach for estimating the boundary (and in turn area) of the impact distribution for fixed wing unmanned aircraft is proposed. A series of geometric templates that approximate the impact distributions are derived using an empirical analysis of the results obtained from a 6-Degree of Freedom (6DoF) simulation. The impact distributions can be aggregated to provide impact footprint distributions for a range of generic phases of flight and missions. The maximum impact footprint areas obtained from the geometric template are shown to have a relative error of typically less than 1% compared to the areas calculated using the computationally more expensive 6DoF simulation. Computation times for the geometric models are on the order of one second or less, using a standard desktop computer. Future work includes characterising the distribution of impact locations within the footprint boundaries.
Resumo:
To test the importance of the dopamine D2 receptor (DRD2) region in nicotine dependence, 150 smokers and 228 controls were genotyped for the DRD2 C957T, -141delC and ANKK1 TaqIA polymorphisms (rs6277, rs1799732 and rs1800497, respectively). The -141delC SNP did not show any association but both the C957T and TaqIA SNPs showed association at the allele, genotype, haplotype and combined genotype levels. The 957C/TaqI A1 haplotype was more than 3.5 times as likely to be associated with nicotine dependence compared with the 957T/TaqI A1 haplotype (P = 0.003). Analysis of the combined genotypes of both SNPs revealed that individuals who were homozygous for the 957C-allele (CC) and had either one or two copies of the TaqI A1-allele were 3.3 times as likely to have nicotine dependence compared to all other genotype combinations (P = 0.0003) and that these genotypes accounted for approximately 13% of the susceptibility to nicotine addiction in our population. Our findings suggest that the DRD2 C957T polymorphism and the ANKK1 TaqIA polymorphism are key contributors to the genetic susceptibility to nicotine dependence.
Resumo:
This study examines the influence of cancer stage, distance to treatment facilities and area disadvantage on breast and colorectal cancer spatial survival inequalities. We also estimate the number of premature deaths after adjusting for cancer stage to quantify the impact of spatial survival inequalities. Population-based descriptive study of residents aged <90 years in Queensland, Australia diagnosed with primary invasive breast (25,202 females) or colorectal (14,690 males, 11,700 females) cancers during 1996-2007. Bayesian hierarchical models explored relative survival inequalities across 478 regions. Cancer stage and disadvantage explained the spatial inequalities in breast cancer survival, however spatial inequalities in colorectal cancer survival persisted after adjustment. Of the 6,019 colorectal cancer deaths within 5 years of diagnosis, 470 (8%) were associated with spatial inequalities in non-diagnostic factors, i.e. factors beyond cancer stage at diagnosis. For breast cancers, of 2,412 deaths, 170 (7%) were related to spatial inequalities in non-diagnostic factors. Quantifying premature deaths can increase incentive for action to reduce these spatial inequalities.
Resumo:
Atmospheric nanoparticles are one of those pollutants currently unregulated through ambient air quality standards. The aim of this chapter is to assess the environmental and health impacts of atmospheric nanoparticles in European environments. The chapter begins with the conventional information on the origin of atmospheric nanoparticles, followed by their physical and chemical characteristics. A brief overview of recently published review articles on this topic is then presented to guide those readers interested in exploring any specific aspect of nanoparticles in greater detail. A further section reports a summary of recently published studies on atmospheric nanoparticles in European cities. This covers a total of about 45 sampling locations in 30 different cities within 15 European countries for quantifying levels of roadside and urban background particle number concentrations (PNCs). Average PNCs at roadside and urban background sites were found to be 3.82±3.25 ×104 cm–3 and 1.63±0.82 ×104 cm–3, respectively, giving a roadside to background PNC ratio of ~2.4. Engineered nanoparticles are one of the key emerging categories of airborne nanoparticles, especially for the indoor environments. Their ambient concentrations may increase in future due to widespread use of nanotechnology integrated products. Evaluation of their sources and probable impacts on air quality and human health are briefly discussed in the following section. Respiratory deposition doses received by the public exposed to roadside PNCs in numerous European locations are then estimated. These were found to be in the 1.17–7.56 1010 h–1 range over the studied roadside European locations. The following section discusses the potential framework for airborne nanoparticle regulations in Europe and, in addition, the existing control measures to limit nanoparticle emissions at source. The chapter finally concludes with a synthesis of the topic areas covered and highlights important areas for further work.
Resumo:
Most studies of in vitro fertilisation (IVF) outcomes use cycle-based data and fail to account for women who use repeated IVF cycles. The objective of this study was to examine the association between the number of eggs collected (EC) and the percentage fertilised normally, and women’s self-reported medical, personal and social histories. This study involved a crosssectional survey of infertile women (aged 27-46 years) recruited from four privately-owned fertility clinics located in major cities of Australia. Regression modeling was used to estimate the mean EC and mean percentage of eggs fertilised normally: adjusted for age at EC. Appropriate statistical methods were used to take account of repeated IVF cycles by the same women. Among 121 participants who returned the survey and completed 286 IVF cycles, the mean age at EC was 35.2 years (SD 4.5). Women’s age at EC was strongly associated with the number of EC: <30 years, 11.7 EC; 30.0-< 35 years, 10.6 EC; 35.0-<40.0 years, 7.3 EC; 40.0+ years, 8.1 EC; p<.0001. Prolonged use of oral contraceptives was associated with lower numbers of EC: never used, 14.6 EC; 0-2 years, 11.7 EC; 3-5 years, 8.5 EC; 6þ years, 8.2 EC; p=.04. Polycystic ovary syndrome (PCOS) was associated with more EC: have PCOS, 11.5 EC; no, 8.3 EC; p=.01. Occupational exposures may be detrimental to normal fertilisation: professional roles, 58.8%; trade and service roles, 51.8%; manual and other roles, 63.3%; p=.02. In conclusion, women’s age remains the most significant characteristic associated with EC but not the percentage of eggs fertilised normally.
Resumo:
Aims/hypothesis: Impaired central vision has been shown to predict diabetic peripheral neuropathy (DPN). Several studies have demonstrated diffuse retinal neurodegenerative changes in diabetic patients prior to retinopathy development, raising the prospect that non-central vision may also be compromised by primary neural damage. We hypothesise that type 2 diabetic patients with DPN exhibit visual sensitivity loss in a distinctive pattern across the visual field, compared with a control group of type 2 diabetic patients without DPN. Methods: Increment light sensitivity was measured by standard perimetry in the central 30 degree of visual field for two age-matched groups of type 2 diabetic patients, with and without neuropathy (n=40/30). Neuropathy status was assigned using the neuropathy disability score. Mean visual sensitivity values were calculated globally, for each quadrant and for three eccentricities (0-10 degree , 11-20 degree and 21-30 degree ). Data were analysed using a generalised additive mixed model (GAMM). Results: Global and quadrant between-group visual sensitivity mean differences were marginally but consistently lower (by about 1 dB) in the neuropathy cohort compared with controls. Between-group mean differences increased from 0.36 to 1.81 dB with increasing eccentricity. GAMM analysis, after adjustment for age, showed these differences to be significant beyond 15 degree eccentricity and monotonically increasing. Retinopathy levels and disease duration were not significant factors within the model (p=0.90). Conclusions/interpretation: Visual sensitivity reduces disproportionately with increasing eccentricity in type 2 diabetic patients with peripheral neuropathy. This sensitivity reduction within the central 30 degree of visual field may be indicative of more consequential loss in the far periphery.