307 resultados para ascent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between winter (DJF) rainfall over Portugal and the variable large scale circulation is addressed. It is shown that the poles of the sea level pressure (SLP) field variability associated with rainfall variability are shifted about 15° northward with respect to those used in standard definitions of the North Atlantic Oscillation (NAO). It is suggested that the influence of NAO on rainfall dominantly arises from the associated advection of humidity from the Atlantic Ocean. Rainfall is also related to different aspects of baroclinic wave activity, the variability of the latter quantity in turn being largely dependent on the NAO. A negative NAO index (leading to increased westerly surface geostrophic winds into Portugal) is associated with an increased number of deep (ps<980 hPa) surface lows over the central North Atlantic and of intermediate (980ascent of air, is revealed by the statistics: for a given advection, rainfall amounts for months with local cyclone cores over the considered region tend to exceed those without. Copyright © 1999 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric profiles of cosmic rays and radioactivity can be obtained using adapted meteorologi- cal radiosondes, for which Geiger tubes remain widely used detectors. Simultaneous triggering of two tubes provides an indication of energetic events. As, however, only small volume detectors can be carried, the event rate is small, which, due to the rapid balloon ascent, cannot be circumvented using long averaging periods. To derive count rates at low altitudes, a microcontroller is used to de- termine the inter-event time. This yields estimates of the coincidence rate below 5 km, where the coincidence rate is too small to determine solely by event counting

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an assessment of how tropical cyclone activity might change due to the influence of increased atmospheric carbon dioxide concentrations, using the UK’s High Resolution Global Environment Model (HiGEM) with N144 resolution (~90 km in the atmosphere and ~40 km in the ocean). Tropical cyclones are identified using a feature tracking algorithm applied to model output. Tropical cyclones from idealized 30-year 2×CO2 (2CO2) and 4×CO2 (4CO2) simulations are compared to those identified in a 150-year present-day simulation, which is separated into a 5-member ensemble of 30-year integrations. Tropical cyclones are shown to decrease in frequency globally by 9% in the 2CO2 and 26% in the 4CO2. Tropical cyclones only become more intese in the 4CO2, however uncoupled time slice experiments reveal an increase in intensity in the 2CO2. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity in the main development regions, is used to determine the response of tropical cyclone activity to increased atmospheric CO2. A weaker Walker circulation and a reduction in zonally averaged regions of updrafts lead to a shift in the location of tropical cyclones in the northern hemisphere. A decrease in mean ascent at 500 hPa contributes to the reduction of tropical cyclones in the 2CO2 in most basins. The larger reduction of tropical cyclones in the 4CO2 arises from further reduction of mean ascent at 500 hPa and a large enhancement of vertical wind shear, especially in the southern hemisphere, North Atlantic and North East Pacific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The warm conveyor belt (WCB) of an extratropical cyclone generally splits into two branches. One branch (WCB1) turns anticyclonically into the downstream upper-level tropospheric ridge, while the second branch (WCB2) wraps cyclonically around the cyclone centre. Here, the WCB split in a typical North Atlantic cold-season cyclone is analysed using two numerical models: the Met Office Unified Model and the COSMO model. The WCB flow is defined using off-line trajectory analysis. The two models represent the WCB split consistently. The split occurs early in the evolution of the WCB with WCB1 experiencing maximum ascent at lower latitudes and with higher moisture content than WCB2. WCB1 ascends abruptly along the cold front where the resolved ascent rates are greatest and there is also line convection. In contrast, WCB2 remains at lower levels for longer before undergoing saturated large-scale ascent over the system's warm front. The greater moisture in WCB1 inflow results in greater net potential temperature change from latent heat release, which determines the final isentropic level of each branch. WCB1 also exhibits lower outflow potential vorticity values than WCB2. Complementary diagnostics in the two models are utilised to study the influence of individual diabatic processes on the WCB. Total diabatic heating rates along the WCB branches are comparable in the two models with microphysical processes in the large-scale cloud schemes being the major contributor to this heating. However, the different convective parameterisation schemes used by the models cause significantly different contributions to the total heating. These results have implications for studies on the influence of the WCB outflow in Rossby wave evolution and breaking. Key aspects are the net potential temperature change and the isentropic level of the outflow which together will influence the relative mass going into each WCB branch and the associated negative PV anomalies at the tropopause-level flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A primitive equation model is used to study the sensitivity of baroclinic wave life cycles to the initial latitude-height distribution of humidity. Diabatic heating is parametrized only as a consequence of condensation in regions of large-scale ascent. Experiments are performed in which the initial relative humidity is a simple function of model level, and in some cases latitude bands are specified which are initially relatively dry. It is found that the presence of moisture can either increase or decrease the peak eddy kinetic energy of the developing wave, depending on the initial moisture distribution. A relative abundance of moisture at mid-latitudes tends to weaken the wave, while a relative abundance at low latitudes tends to strengthen it. This sensitivity exists because competing processes are at work. These processes are described in terms of energy box diagnostics. The most realistic case lies on the cusp of this sensitivity. Further physical parametrizations are then added, including surface fluxes and upright moist convection. These have the effect of increasing wave amplitude, but the sensitivity to initial conditions of relative humidity remains. Finally, 'control' and 'doubled CO2' life cycles are performed, with initial conditions taken from the time-mean zonal-mean output of equilibrium GCM experiments. The attenuation of the wave resulting from reduced baroclinicity is more pronounced than any effect due to changes in initial moisture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A subtropical Rossby-wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific convergence zone (SPCZ) that is observed in a significant proportion of Madden–Julian oscillations (MJOs). Large-scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby-wave response with an upper-tropospheric anticyclone centred over, or slightly to the west of, the convection. Large potential-vorticity (PV) gradients, associated with the subtropical jet and the tropopause, lie just poleward of the anticyclone, and large magnitude PV air is advected equatorwards on the eastern side of the anticyclone. This ‘high’ PV air, or upper-tropospheric trough, is far enough off the equator that it has associated strong horizontal temperature gradients, and it induces deep ascent on its eastern side, at a latitude of about 15–30°. If this deep ascent is over a region susceptible to deep convection, such as the SPCZ, then convection may be forced or triggered. Hence convection develops along the SPCZ as a forced response to convection over Indonesia. The response mechanism is essentially one of subtropical Rossby-wave propagation. This hypothesis is based on a case study of a particularly strong MJO in early 1988, and is tested by idealized modelling studies. The mechanism may also be relevant to the existence of the mean SPCZ, as a forced response to mean Indonesian convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical deep convection exhibits a variety of levels of aggregation over a wide range of scales. Based on a multisatellite analysis, the present study shows at mesoscale that different levels of aggregation are statistically associated with differing large-scale atmospheric states, despite similar convective intensity and large-scale forcings. The more aggregated the convection, the dryer and less cloudy the atmosphere, the stronger the outgoing longwave radiation, and the lower the planetary albedo. This suggests that mesoscale convective aggregation has the potential to affect couplings between moisture and convection and between convection, radiation, and large-scale ascent. In so doing, aggregation may play a role in phenomena such as “hot spots” or the Madden-Julian Oscillation. These findings support the need for the representation of mesoscale organization in cumulus parameterizations; most parameterizations used in current climate models lack any such representation. The ability of a cloud system-resolving model to reproduce observed relationships suggests that such models may be useful to guide attempts at parameterizations of convective aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that summer precipitation biases in the South Asian monsoon domain are sensitive to increasing the convective parametrisation’s entrainment and detrainment rates in the Met Office Unified Model. We explore this sensitivity to improve our understanding of the biases and inform efforts to improve convective parametrisation. We perform novel targeted experiments in which we increase the entrainment and detrainment rates in regions of especially large precipitation bias. We use these experiments to determine whether the sensitivity at a given location is a consequence of the local change to convection or is a remote response to the change elsewhere. We find that a local change leads to different mean-state responses in comparable regions. When the entrainment and detrainment rates are increased globally, feedbacks between regions usually strengthen the local responses. We choose two regions of tropical ascent that show different mean-state responses, the western equatorial Indian Ocean and western north Pacific, and analyse them as case studies to determine the mechanisms leading to the different responses. Our results indicate that several aspects of a region’s mean-state, including moisture content, sea surface temperature and circulation, play a role in local feedbacks that determine the response to increased entrainment and detrainment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strong winds equatorwards and rearwards of a cyclone core have often been associated with two phenomena, the cold conveyor belt (CCB) jet and sting jets. Here, detailed observations of the mesoscale structure in this region of an intense cyclone are analysed. The {\it in-situ} and dropsonde observations were obtained during two research flights through the cyclone during the DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) field campaign. A numerical weather prediction model is used to link the strong wind regions with three types of ``air streams'', or coherent ensembles of trajectories: two types are identified with the CCB, hooking around the cyclone center, while the third is identified with a sting jet, descending from the cloud head to the west of the cyclone. Chemical tracer observations show for the first time that the CCB and sting jet air streams are distinct air masses even when the associated low-level wind maxima are not spatially distinct. In the model, the CCB experiences slow latent heating through weak resolved ascent and convection, while the sting jet experiences weak cooling associated with microphysics during its subsaturated descent. Diagnosis of mesoscale instabilities in the model shows that the CCB passes through largely stable regions, while the sting jet spends relatively long periods in locations characterized by conditional symmetric instability (CSI). The relation of CSI to the observed mesoscale structure of the bent-back front and its possible role in the cloud banding is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study assesses the influence of the El Niño–Southern Oscillation (ENSO) on global tropical cyclone activity using a 150-yr-long integration with a high-resolution coupled atmosphere–ocean general circulation model [High-Resolution Global Environmental Model (HiGEM); with N144 resolution: ~90 km in the atmosphere and ~40 km in the ocean]. Tropical cyclone activity is compared to an atmosphere-only simulation using the atmospheric component of HiGEM (HiGAM). Observations of tropical cyclones in the International Best Track Archive for Climate Stewardship (IBTrACS) and tropical cyclones identified in the Interim ECMWF Re-Analysis (ERA-Interim) are used to validate the models. Composite anomalies of tropical cyclone activity in El Niño and La Niña years are used. HiGEM is able to capture the shift in tropical cyclone locations to ENSO in the Pacific and Indian Oceans. However, HiGEM does not capture the expected ENSO–tropical cyclone teleconnection in the North Atlantic. HiGAM shows more skill in simulating the global ENSO–tropical cyclone teleconnection; however, variability in the Pacific is overpronounced. HiGAM is able to capture the ENSO–tropical cyclone teleconnection in the North Atlantic more accurately than HiGEM. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity, is used to further understand the response of tropical cyclone activity to ENSO in the North Atlantic and western North Pacific. The vertical wind shear response over the Caribbean is not captured in HiGEM compared to HiGAM and ERA-Interim. Biases in the mean ascent at 500 hPa in HiGEM remain in HiGAM over the western North Pacific; however, a more realistic low-level vorticity in HiGAM results in a more accurate ENSO–tropical cyclone teleconnection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Warm conveyor belts (WCBs) are the main ascending air masses within extratropical cyclones. They often exhibit strong condensation and precipitation, associated with ascent on large scales or embedded convection. Most of the air outflows into the upper troposphere as part of a ridge. Such ridges are an integral part of Rossby waves propagating along the tropopause and are identified with a negative potential vorticity (PV) anomaly and associated anticyclonic circulation. It has been argued that diabatic modification of PV in WCBs has an important influence on the extent of the ridge, propagation of Rossby waves and weather impacts downstream. Following the coherent ensemble of trajectories defining a WCB, PV is expected to increase with time while below the level of maximum latent heating and then decrease as trajectories ascend above the heating maximum. In models, it is found that the net change is approximately zero, so that the average PV of the WCB outflow is almost equal to the PV of its inflow. Here, the conditions necessary for this evolution are explored analytically using constraints arising from the conservation of circulation. It is argued that the net PV change is insensitive to the details of diabatic processes and the PV maximum midway along a WCB depends primarily on the net diabatic transport of mass from the inflow to the outflow layer. The main effect of diabatic processes within a WCB is to raise the isentropic level of the outflow, rather than to modify PV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Central Atlantic Magmatic Province (CAMP), emplaced at the Triassic-Jurassic (T-J) boundary (-200 Ma), is among the largest igneous provinces on Earth. The Maranhao basin in NE Brazil is located around 700 km inland and 2000 km from the site of the earliest Pangea disruption. The CAMP tholeiites occur only in the western part of the basin and have been described as low and high-Ti. Here we document the occurrence of two sub-groups among the high-Ti tholeiites in the Western Maranhao basin. The major and trace elements and the Sr-Nd-Pb isotopic ratios define three chemical groups corresponding to the low-Ti (TiO(2)< 1.3 wt.%), high-Ti (TiO(2)-2.0 wt.%) and evolved high-Ti (TiO(2 >)3 wt.%) western Maranhao basin tholeiites (WMBT). The new (40)Ar/(39)Ar plateau ages obtained on plagioclase separates for high-Ti (199.7 +/- 2.4 Ma) and evolved high-Ti WMBT (197.2 +/- 0.5 Ma and 198.2 +/- 0.6 Ma) are indistinguishable and identical to those of previously analyzed low-Ti WMBT (198.5 +/- 0.8 Ma) and to the mean (40)Ar/(39)Ar age of the CAMP (199 +/- 2.4 Ma). We also present the first Re-Os isotopic data for CAMP basalts. The low and high-Ti samples display mantle-like initial ((187)Os/(188)Os)(i) ranging from 0.1267 to 0.1299, while the evolved high-Ti samples are more radiogenic (((187)Os/ (188)Os)(i) up to 0.184) We propose that the high-Ti WMBT were derived from the sub-lithospheric asthenosphere, and contaminated during ascent by interaction with the subcontinental lithospheric mantle (SCLM). The evolved high-Ti WMBT were derived from the same asthenospheric source but experienced crustal contamination. The chemical characteristics of the low-Ti group can be explained by partial melting of the most fertile portions of the SCLM metasomatized during paleo-subduction. Alternatively, the low-Ti WMBT could be derived from the sub-lithospheric asthenosphere but the resulting melts may have undergone contamination by the SCLM. The occurrences of high-Ti basalts are apparently not restricted to the area of initial continental disruption which may bring into question previous interpretations such as those relating high-Ti CAMP magmatism to the initiation of Atlantic ridge spreading or as the expression of a deep mantle plume. We propose that the CAMP magmatism in the Maranhao basin may be attributed to local hotter mantle conditions due to the combined effects of edge-driven convection and large-scale mantle warming under the Pangea supercontinent. The involvement of a mantle-plume with asthenosphere-like isotopic characteristics cannot be ruled out either as one of the main source components of the WMBT or as a heat supplier. (C) 2010 Elsevier BM. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic fabric and rock magnetism studies were performed on apparently isotropic granite facies from the main intrusion of the Lavras do Sul Intrusive Complex pluton (LSIC, Rio Grande do Sul, South Brazil). This intrusion is roughly circular (similar to 12 x 13.5 km), composed of alkali-calcic and alkaline granitoids, with the latter occupying the margin of the pluton. Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the granites. Several rock-magnetism experiments performed in one specimen from each sampled site show that for all sites the magnetic susceptibility is dominantly carried by ferromagnetic minerals, while mainly magnetite carries the magnetic fabrics. Lineations and foliations in the granite facies were successful determined by applying magnetic methods. Magnetic lineations are gently plunging and roughly parallel to the boundaries of the pluton facies, except at the few sites in the central facies which have a radial orientation pattern. In contrast, the magnetic foliations tend to follow the contacts between the different granite facies. They are gently outerward-dipping inside the pluton, and become either steeply southwesterly dipping or vertical towards its margin. The lack of solid-state and subsolidus deformations at outcrop scale and in thin sections precludes deformation after full crystallization of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of processes reflecting magma flow. The foliation pattern displays a dome-shaped form for the main LSIC-pluton. However, the alkaline granites which outcrop in the southern part of the studied area have an inward-dipping foliation, and the steeply plunging magnetic lineation suggests that this area could be part of a feeder zone. The magma ascent probably occurred due to ring-diking. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine +/- orthopyroxene +/- clinopyroxene +/- plagioclase: their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The (87)Sr/(16)Sr (around 0.703) and (143)Nd/(144)Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the (147)Sm/(144)Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ((87)Sr/(86)Sr and (143)Nd/(144)Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 590-580 Ma Itu Granite Province (IGP) is a roughly linear belt of post-orogenic granite plutons similar to 60 km wide extending for some 350 km along the southern edge of the Apia-Guaxupe Terrane in southeastern Brazil. Typical components are subalkaline A-type granites (some with rapakivi texture) that crystallized at varied, but mostly strongly oxidizing conditions, and contrast with a coeval association of also oxidized high-K calc-alkaline granites in terms of major (e. g., lower Ca/Fe) and trace elements (higher Nb, Y, Zr). Mantle-derived magmas (such as those forming the LILE-rich Piracaia Monzodiorite, with epsilon(Nd(t)) = -7 to -10, (87)Sr/(86)Sr((t)) = 0.7045-0.7055) are inferred to derive from enriched subcontinental lithosphere modified during previous subduction, and may have played a role in the generation of the A-type granites, adding melts or fluids or both to the lower crust from which the latter were generated. The IGP is interpreted as a reflection of crust uplift and increased heat flux during ascent of hot, less dense asthenosphere after continental collision, probably reflecting breakoff of an oceanic slab coeval to the right-lateral accretion of a terrane related to the Mantiqueira Orogenic System.