695 resultados para apodised gratings
Resumo:
We propose a new type of fiber Bragg grating (FBG) with a V-shaped dispersion profile. We demonstrate that such V-shaped FBGs bring advantages in manipulation of optical signals compared to conventional FBGs with a constant dispersion, e.g., they can produce larger chirp for the same input pulsewidth and/or can be used as pulse shapers. Application of the proposed V-shaped FBGs for signal prechirping in fiber transmission is examined. The proposed design of the V-shaped FBG can be easily extended to embrace multichannel devices.
Resumo:
Direct, point-by-point inscription of fibre Bragg gratings by an infrared femtosecond laser has been reported recently. Response of these gratings to annealing at temperatures in the range 500 to 1050°C is studied for the first time. Gratings inscribed by infrared femtosecond lasers were thermally stable at temperatures up to 900°C, representing a significant improvement in comparison with the 'common', UV-inscribed, gratings. Annealing at temperatures up to 700°C increased grating reflectivity. © IEE 2005.
Resumo:
We report a near-ideal in-fiber polarizer implemented by use of 45° tilted fiber Bragg grating structures that are UV inscribed in hydrogenated Ge-doped fiber. We demonstrate a polarization-extinction ratio of 33 dB over a 100-nm operation range near 1550 nm. We further show an achievement of 99.5% degree of polarization for unpolarized light with these gratings. We also theoretically investigate tilted grating structures based on the Green's function calculation, therein revealing the unique polarization characteristics, which are in excellent agreement with experimental data.
Resumo:
We propose and demonstrate novel virtual Gires–Tournois (GT) etalons based on fiber gratings. By introducing an additional phase modulation in wideband linearly chirped fiber Bragg gratings, we have successfully generated GT resonance with only one grating. This technique can simplify the fabrication procedure while retaining the normal advantages of distributed etalons, including their full compatibility with optical fiber, low insertion loss, and low cost. Such etalons can be used as dispersion compensation devices in optical transmission systems.
Resumo:
The fabrication of sub-micron periodic structures beyond diffraction limit is a major motivation for the present paper. We describe the fabrication of the periodic structure of 25 mm long with a pitch size of 260 nm which is less than a third of the wavelength used. This is the smallest reported period of the periodic structure inscribed by direct point-by-point method. A prototype of the add-drop filter, which utilizes such gratings, was demonstrated in one stage fabrication process of femtosecond inscription, in the bulk fused silica.
Resumo:
The development of an all-optical communications infrastructure requires appropriate optical switching devices and supporting hardware. This thesis presents several novel fibre lasers which are useful pulse sources for high speed optical data processing and communications. They share several attributes in common: flexibility, stability and low-jitter output. They all produce short (picosecond) and are suitable as sources for soliton systems. The lasers are all-fibre systems using erbium-doped fibre for gain, and are actively-modelocked using a dual-wavelength nonlinear optical loop mirror (NOLM) as a modulator. Control over the operating wavelength and intra-cavity dispersion is obtained using a chirped in-fibre Bragg grating.Systems operating both at 76MHz and gigahertz frequencies are presented, the latter using a semiconductor laser amplifier to enhance nonlinear action in the loop mirror. A novel dual-wavelength system in which two linear cavities share a common modulator is presented with results which show that the jitter between the two wavelengths is low enough for use in switching experiments with data rates of up to 130Gbit/s.
Resumo:
This thesis presents details on the fabrication of microwave transversal filters using fibre Bragg grating arrays and the building of fibre Bragg grating based magnetic-field sensors. Some theoretical background about fibre Bragg gratings, photosensitivity, fibre Bragg grating sensors and filters are presented. Fibre Bragg grating sensors in other industrial applications are highlighted. Some sensing principles are also introduced. Experimental work is carried out to demonstrate a magnetic-field sensor using an established fibre Bragg grating strain sensor. System performance and trade-off are discussed. The most important part of this thesis is on the fabrication of photonic transversal filter using fibre Bragg grating arrays. In order to improve the filter performance, a novel tap multiplexing structure is presented. Further improving approaches such as apodisation are also investigated. The basis of nonrecirculating filter, some structure and performance are introduced.
Resumo:
This thesis presents details on both theoretical and experimental aspects of UV written fibre gratings. The main body of the thesis deals with the design, fabrication and testing of telecommunication optical fibre grating devices, but also an accurate theoretical analysis of intra-core fibre gratings is presented. Since more than a decade, fibre gratings have been extensively used in the telecommunication field (as filters, dispersion compensators, and add/drop multiplexers for instance). Gratings for telecommunication should conform to very high fabrication standards as the presence of any imperfection raises the noise level in the transmission system compromising its ability of transmitting intelligible sequence of bits to the receiver. Strong side lobes suppression and high and sharp reflection profile are then necessary characteristics. A fundamental part of the theoretical and experimental work reported in this thesis is about apodisation. The physical principle of apodisation is introduced and a number of apodisation techniques, experimental results and numerical optimisation of the shading functions and all the practical parameters involved in the fabrication are detailed. The measurement of chromatic dispersion in fibres and FBGs is detailed and an estimation of its accuracy is given. An overview on the possible methods that can be implemented for the fabrication of tunable fibre gratings is given before detailing a new dispersion compensator device based on the action of a distributed strain onto a linearly chirped FBG. It is shown that tuning of second and third order dispersion of the grating can be obtained by the use of a specially designed multipoint bending rig. Experiments on the recompression of optical pulses travelling long distances are detailed for 10 Gb/s and 40 Gb/s. The characterisation of a new kind of double section LPG fabricated on a metal-clad coated fibre is reported. The fabrication of the device is made easier by directly writing the grating through the metal coating. This device may be used to overcome the recoating problems associated with standard LPGs written in step-index fibre. Also, it can be used as a sensor for simultaneous measurements of temperature and surrounding medium refractive index.
Resumo:
The underlying work to this thesis focused on the exploitation and investigation of photosensitivity mechanisms in optical fibres and planar waveguides for the fabrication of advanced integrated optical devices for telecoms and sensing applications. One major scope is the improvement of grating fabrication specifications by introducing new writing techniques and the use of advanced characterisation methods for grating testing. For the first time the polarisation control method for advanced grating fabrication has successfully been converted to apodised planar waveguide fabrication and the development of a holographic method for the inscription of chirped gratings at arbitrary wavelength is presented. The latter resulted in the fabrication of gratings for pulse-width suppression and wavelength selection in diode lasers. In co-operation with research partners a number of samples were tested using optical frequency domain and optical low coherence reflectometry for a better insight into the limitations of grating writing techniques. Using a variety of different fabrication methods, custom apodised and chirped fibre Bragg gratings were written for the use as filter elements for multiplexer-demultiplexer devices, as well as for short pulse generation and wavelength selection in telecommunication transmission systems. Long period grating based devices in standard, speciality and tapered fibres are presented, showing great potential for multi-parameter sensing. One particular scope is the development of vectorial curvature and refractive index sensors with potential for medical, chemical and biological sensing. In addition the design of an optically tunable Mach-Zehnder based multiwavelength filter is introduced. The discovery of a Type IA grating type through overexposure of hydrogen loaded standard and Boron-Germanium co-doped fibres strengthened the assumption of UV-photosensitivity being a highly non-linear process. Gratings of this type show a significantly lower thermal sensitivity compared to standard gratings, which makes them useful for sensing applications. An Oxford Lasers copper-vapour laser operating at 255 nm in pulsed mode was used for their inscription, in contrast to previous work using CW-Argon-Ion lasers and contributing to differences in the processes of the photorefractive index change
Resumo:
The consequences of fabricating Bragg gratings in various fibres, with or without hydrogen loading, and with varying laser power levels are explored. Three new techniques for fabricating chirped gratings are presented. Beams with dissimilar wavefront curvatures are interfered to give chirped gratings. With the same aim techniques of writing gratings on tapered fibres and on deformed fibres are also covered. With these techniques, a wide variety of gratings has been fabricated from the 'superbroad' (with bandwidths of up to 180 nm), small to medium bandwidth gratings with linear chirp profiles and quadratic chirped gratings. It is demonstrated that chirped grating can be concatenated to form all-fibre Fabry-Perot and Moiré resonators. These are further concatenated with chirped gratings to produce filters with narrow passbands and very broad stopbands. A number of other applications are also addressed. The use of chirped fibre gratings for dispersion compensation and femtosecond chirped pulse amplification is demonstrated. Chirped gratings are used as dispersive elements in modelocked fibre lasers producing ultrashort pulses. A chirped fibre grating Fabry-Perot transmission filter is used in a continuous wave laser that exhibits eleven simultaneously lasing wavelengths. Finally, the use of grating-coupler devices as variable reflectivity mirrors for laser optimisation and gain clamping is considered.
Resumo:
This thesis presents the fabrication of fibre gratings in novel optical fibres for sensing applications. Long period gratings have been inscribed into photonic crystal fibre using the electric-arc technique. The resulting sensing characteristics were found to depend on the air-hole geometry of the particular fibre. This provides the potential of designing a fibre to have enhanced sensitivity to a particular measure and whilst removing unwanted cross sensitivities. Fibre Bragg gratings have been fabricated in a variety of polymer optical fibres, including microstructured polymer optical fibre, using a continuous wave helium cadmium laser. The thermal response of the gratings have been characterised and found to have enhanced sensitivity compared to fibre Bragg gratings in silica optical fibre. The increased sensitivity has been harnessed to achieve a grating based device in single mode step index polymer optical fibre by fabricating an electrically tunable fibre Bragg grating. This was accomplished by coating the grating region in a thin layer of copper, which upon application of a direct current, causes a temperature induced Bragg wavelength shift.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT This thesis describes a detailed study of advanced optical fibre sensors based on fibre Bragg grating (FBG), tilted fibre Bragg grating (TFBG) and long-period grating (LPG) and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below.The most important contribution from the research work presented in this thesis is the implementation of in-fibre grating based refractive index (RI) sensors, which could be the good candidates for optical biochemical sensing. Several fibre grating based RI sensors have been proposed and demonstrated by exploring novel grating structures and different fibre types, and employing efficient hydrofluoric acid etching technique to enhance the RI sensitivity. All the RI devices discussed in this thesis have been used to measure the concentration of sugar solution to simulate the chemical sensing. Efforts have also been made to overcome the RI-temperature cross-sensitivity for practical application. The demonstrated in-fibre grating based RI sensors could be further implemented as potential optical biosensors by applying bioactive coatings to realise high bio-sensitivity and bio-selectivity.Another major contribution of this thesis is the application of TFBGs. A prototype interrogation system by the use of TFBG with CCD-array was implemented to perform wavelength division multiplexing (WDM) interrogation around 800nm wavelength region with the advantages of compact size, fast detection speed and low-cost. As a high light, a novel in-fibre twist sensors utilising strong polarisation dependant coupling behaviour of an 81°-TFBG was presented to demonstrate the high torsion sensitivity and capability of direction recognition.