981 resultados para anticancer activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human aurora family of serine-threonine kinases comprises three members, which act in concert with many other proteins to control chromosome assembly and segregation during mitosis. Aurora dysfunction can cause aneuploidy, mitotic arrest, and cell death. Aurora kinases are strongly expressed in a broad range of cancer types. Aurora A expression in tumors is often associated with gene amplification, genetic instability, poor histologic differentiation, and poor prognosis. Aurora B is frequently expressed at high levels in a variety of tumors, often coincidently with aurora A, and expression level has also been associated with increased genetic instability and clinical outcome. Further, aurora kinase gene polymorphisms are associated with increased risk or early onset of cancer. The expression of aurora C in cancer is less well studied. In recent years, several small-molecule aurora kinase inhibitors have been developed that exhibit preclinical activity against a wide range of solid tumors. Preliminary clinical data from phase I trials have largely been consistent with cytostatic effects, with disease stabilization as the best response achieved in solid tumors. Objective responses have been noted in leukemia patients, although this might conceivably be due to inhibition of the Abl kinase. Current challenges include the optimization of drug administration, the identification of potential biomarkers of tumor sensitivity, and combination studies with cytotoxic drugs. Here, we summarize the most recent preclinical and clinical data and discuss new directions in the development of aurora kinase inhibitors as antineoplastic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two hundred and eighty-five botanically identifide plant materials have been extracted with 50 percent ethanol and the extracts put through a wide biological screen of 61 tests. These include tests for antibacterial, antifungal, anthelminthic, antiprotozoal, anticancer, antifertillity, hypoglycaemic and a wide range of pharmacological activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three hundred botanically identified plant materials have been extracted with 50% ethanol and the extracts put through a wide biological screen. These include tests for antibacterial, anticancer, antifertility, antifungal, anthelminthic, antiprotozoal, antiviral and pharmacological activities. Biological activities have been confirmed in fractions of fifty-six of these extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol extracts (50%) of 295 botanically Identified plant materials have been tested for a wide variety of biological activities including anticancer, chemotherapeutic and pharmaceutical activities. Biological activities been confirmed in fractions of 34 of these extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol extracts (50%) of 295 botanically Identified plant materials have been tested for a wide variety of biological activities including anticancer, chemotherapeutic and pharmaceutical activities. Biological activities been confirmed in fractions of 22 of these extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two hundred and eighty nine botanically identified plant materials have been tested as 50% ethanol extracts, for a wide variety of bloloalcal activities including including anticancer, chemotherapeutic and pharmaceutical activities. Biological activities been confirmed in fractions of 47 of these extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two hundred and ninety eight botanically identified plant materials have been tested as 50% ethanol extracts, for a wide variety of biological activities including antifertility, anticancer, chemotherapeutic and pharmacological activities. Biological activities been confirmed in fractions of 84 of these extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two hundred and ninety three botanically identified plant materials have been tested as 50% ethanol extracts, for a wide variety of biological activities including antifertility, anticancer, chemotherapeutic and pharmaceutical activities. Biological activity has been confirmed in fractions of 40 of these extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Docetaxel (Taxotere(®) ) is currently used intravenously as an anticancer agent and is primarily metabolized by Cytochrome P450 3A (CYP3A). The HIV protease inhibitor ritonavir, a strong CYP3A4 inhibitor, decreased first-pass metabolism of orally administered docetaxel. Anticancer effects of ritonavir itself have also been described. We here aimed to test whether ritonavir co-administration could decrease intratumoral metabolism of intravenously administered docetaxel and thus increase the antitumor activity of docetaxel in an orthotopic, immunocompetent mouse model for breast cancer. Spontaneously arising K14cre;Brca1(F/F) ;p53(F/F) mouse mammary tumors were orthotopically implanted in syngeneic mice lacking Cyp3a (Cyp3a(-/-) ) to limit ritonavir effects on systemic docetaxel clearance. Over 3 weeks, docetaxel (20 mg/kg) was administered intravenously once weekly, with or without ritonavir (12.5 mg/kg) administered orally for 5 days per week. Untreated mice were used as control for tumor growth. Ritonavir treatment alone did not significantly affect the median time of survival (14 vs. 10 days). Median time of survival in docetaxel-treated mice was 54 days. Ritonavir co-treatment significantly increased this to 66 days, and substantially reduced relative average tumor size, without altering tumor histology. Concentrations of the major docetaxel metabolite M2 in tumor tissue were reduced by ritonavir co-administration, whereas tumor RNA expression of Cyp3a was unaltered. In this breast cancer model, we observed no direct antitumor effect of ritonavir alone, but we found enhanced efficacy of docetaxel treatment when combined with ritonavir. Our data, therefore, suggest that decreased docetaxel metabolism inside the tumor as a result of Cyp3a inhibition contributes to increased antitumor activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DNA breakage effect of the anticancer agent 3,6-diaziridinyl-2,5-bis(carboethoxyamino)-1,4-benzoquinone (AZQ, NSC-182986) on bacteriophage PM2 DNA was investigated using agarose gel electrophoresis. AZQ caused both single-stranded and double-stranded breaks after reduction with NaBH(,4), but it was not active in the native state. At 120 (mu)M, it degraded 50% of the closed circular form I DNA into 40% form II DNA (single-stranded break) and 10% form III DNA (double-stranded break). It produced a dose-response breakage between 1 (mu)M and 320 (mu)M. The DNA breakage exhibited a marked pH dependency. At 320 (mu)M, AZQ degraded 80% and 60% of form I DNA at pH 4 and 10 respectively, but none between pH 6 to 8. The DNA breakage at physiologic pH was greatly enhanced when 10 (mu)M cupric sulfate was included in the incubation mixture. The DNA strand scission was inhibited by catalase, glutathione, KI, histidine, Tiron, and DABCO. These results suggest that the DNA breakage may be caused by active oxygen metabolites including hydroxyl free radical. The bifunctional cross-linking activity of reduced AZQ on isolated calf thymus DNA was investigated by ethidium fluorescence assay. The cross-linking activity exhibited a similar pH dependency; highest in acidic and alkaline pH, inactive under neutral conditions. Using the alkaline elution method, we found that AZQ induced DNA single-stranded breaks in Chinese hamster ovary cells treated with 50 (mu)M of AZQ for 2 hr. The single-stranded break frequencies in rad equivalents were 17 with 50 (mu)M and 140 with 100 (mu)M of AZQ. In comparison, DNA cross-links appeared in cells treated with only 1 to 25 (mu)M of AZQ for 2 hr. The cross-linking frequencies in rad equivalents were 39 and 90 for 1 and 5 (mu)M of AZQ, respectively. Both DNA-DNA and DNa-protein cross-links were induced by AZQ in CHO cells as revealed by the proteinas K digestion assay. DNA cross-links increased within the first 4 hr of incubation in drug-free medium and slightly decreased by 12 hr, and most of the cross-links disappeared after cells were allowed to recovered for 24 hr.^ By electrochemical analysis, we found that AZQ was more readily reduced at acidic pH. However, incubation of AZQ with NaBH(,4) at pH 7.8 or 10, but not at 4, produced superoxide anion. The opening of the aziridinyl rings of AZQ at pH 4 was faster in the presence of NaBH(,4) than in its absence; no ring-opening was detected at pH 7.8 regardless of the inclusion of NaBH(,4). . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase $\alpha$ are the molecular targets for two metal ions, Zn$\sp{2+}$ and Cd$\sp{2+},$ and an anticancer drug, F-ara-ATP.^ Human DNA ligases were purified to homogeneity and their AMP binding domains were mapped. Although their AMP-binding domains are similar, there could be difference between the two ligases in their DNA binding domains.^ The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP.^ A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex.^ F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3$\sp\prime$-terminus of DNA nick by DNA polymerase $\alpha.$^ All steps of the DNA ligation reaction were inhibited by Zn$\sp{2+}$ and Cd$\sp{2+}$ in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn$\sp{2+}$ and Cd$\sp{2+}$ showed their contradictory effects on the fidelity of the reaction by human DNA polymerase $\alpha.$ Zn$\sp{2+}$ decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd$\sp{2+}$ increased the frequencies of both misinsertion and mispair extension at very low concentration. Our data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the observation that removal of tumors from metastatic organs reversed their chemoresistance, we hypothesized that chemoresistance is induced by extracellular factors in tumor-bearing organs. By comparing chemosensitivity and proteins in different tumors (primary vs. metastases) and different culture systems (tumor fragment histocultures vs. monolayer cultures derived from the same tumor), we found elevated levels of acidic (aFGF) and basic (bFGF) fibroblast growth factors in the conditioned medium (CM) of solid and metastatic tumors. These CM induced broad spectrum resistance to drugs with diverse structures and action mechanisms (paclitaxel, doxorubicin, 5-fluorouracil). Inhibition of bFGF by mAb and its removal by immunoprecipitation resulted in complete reversal of the CM-induced chemoresistance, whereas inhibition/removal of aFGF resulted in partial reversal. Using CM that had been depleted of aFGF and/or bFGF and subsequently reconstituted with respective human recombinant proteins, we found that bFGF but not aFGF induced chemoresistance whereas aFGF amplified the bFGF effect. aFGF and bFGF fully accounted for the CM effect, indicating these proteins as the underlying mechanism of the chemoresistance. The FGF-induced resistance was not due to reduced intracellular drug accumulation or altered cell proliferation. We further showed that an inhibitor of aFGF/bFGF (suramin) enhanced the in vitro and in vivo activity of chemotherapy, resulting in shrinkage and eradication of well established human lung metastases in mice without enhancing toxicity. These results indicate elevated levels of extracellular aFGF/bFGF as an epigenetic mechanism by which cancer cells elude cytotoxic insult by chemotherapy, and provide a basis for designing new treatment strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this review we provide a brief background on the cell cycle and then focus on two novel and emerging areas of cell cycle research that may prove to have significant relevance to the development of novel anticancer agents. In particular, we review the emerging evidence to suggest that histone deacetylase inhibitors may possess cancer cell-specific cytotoxicity due to their ability to target a novel G2/M checkpoint. We also review the recent literature supporting the proposition that inhibition of E2F activity in epithelial cancer cells may prove to be a useful differentiation therapy that operates via cell cycle-dependent and cell cycle-independent mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphosulfomannan 1 (PI-88) is a mixture of highly sulfated oligosaccharides that is currently undergoing clinical evaluation in cancer patients. As well as it's anticancer properties, 1 displays a number of other interesting biological activities. A series of analogues of 1 were synthesized with a single carbon (pentasaccharide) backbone to facilitate structural characterization and interpretation of biological results. In a fashion similar to 1, all compounds were able to inhibit heparanase and to bind tightly to the proangiogenic growth factors FGF-1, FGF-2, and VEGF. The compounds also inhibited the infection of cells and cell-to-cell spread of herpes simplex virus (HSV-1). Preliminary pharmacokinetic data indicated that the compounds displayed different pharmacokinetic behavior compared with 1. Of particular note was the n-octyl derivative, which was cleared 3 times less rapidly than 1 and may provide increased systemic exposure.