920 resultados para antibiotic
Resumo:
Aims: In view of recent findings that a multidrug efflux pump CmeABC exists in Campylobacter jejuni, 391 C. jejuni and 52 Campylobacter coli of human and animal origin were examined for a multidrug resistance phenotype. Materials and methods: The MICs of ampicillin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, tetracycline, cetrimide, triclosan, acridine orange, paraquat and ethidium bromide were determined. Resistance to organic solvents and the effect of salicylate (known inducer of the marRAB operon in Escherichia coli and Salmonella) were also examined. Results: Two C. coli and 13 C. jejuni isolates, mainly from pigs or poultry, were resistant to three or more antibiotics and 12 of these strains had reduced susceptibility to acridine orange and/or ethidium bromide. Strains (n=20) that were less susceptible to acridine orange, ethidium bromide and triclosan were significantly more resistant (P<0.05) to ampicillin, chloramphenicol, ciprofloxacin, erythromycin, nalidixic acid and tetracycline, with two- to four-fold increases in MIC values compared with strains (n=20) most susceptible to acridine orange, ethidium bromide and triclosan. Growth of strains with 1 mM salicylate caused a small (up to two-fold) but statistically significant (Pless than or equal to0.005) increase in the MICs of chloramphenicol, ciprofloxacin, erythromycin and tetracycline. Conclusions: These data indicate that multiple antibiotic resistant (MAR)-like Campylobacter strains occur and it may be postulated that these may overexpress cmeABC or another efflux system.
Resumo:
The proteome of Salmonella enterica serovar Typhimurium was characterized by 2-dimensional HPLC mass spectrometry to provide a platform for subsequent proteomic investigations of low level multiple antibiotic resistance (MAR). Bacteria (2.15 +/- 0.23 x 10(10) cfu; mean +/- s.d.) were harvested from liquid culture and proteins differentially fractionated, on the basis of solubility, into preparations representative of the cytosol, cell envelope and outer membrane proteins (OMPs). These preparations were digested by treatment with trypsin and peptides separated into fractions (n = 20) by strong cation exchange chromatography (SCX). Tryptic peptides in each SCX fraction were further separated by reversed-phase chromatography and detected by mass spectrometry. Peptides were assigned to proteins and consensus rank listings compiled using SEQUEST. A total of 816 +/- 11 individual proteins were identified which included 371 +/- 33, 565 +/- 15 and 262 +/- 5 from the cytosolic, cell envelope and OMP preparations, respectively. A significant correlation was observed (r(2) = 0.62 +/- 0.10; P < 0.0001) between consensus rank position for duplicate cell preparations and an average of 74 +/- 5% of proteins were common to both replicates. A total of 34 outer membrane proteins were detected, 20 of these from the OMP preparation. A range of proteins (n = 20) previously associated with the mar locus in E. coli were also found including the key MAR effectors AcrA, TolC and OmpF.
Resumo:
Salmonella enterica isolates (n = 182) were examined for mutations in the quinolone resistance-determining region of gyrA, gyrB, parC, and parE. The frequency, location, and type of GyrA substitution varied with the serovar. Mutations were found in parC that encoded Thr57-Ser, Thr66-Ile, and Ser80-Arg substitutions. Mutations in the gyrB quinolone resistance-determining region were located at codon Tyr420-Cys or Arg437-Len. Novel mutations were also found in parE encoding Glu453-Gly, His461-Tyr, Ala498-Thr, Val512-Gly, and Ser518-Cys. Although it is counterintuitive, isolates with a mutation in both gyrA and parC were more susceptible to ciprofloxacin than were isolates with a mutation in gyrA alone.
Resumo:
Aims: In Escherichia coli, increased expression of efflux pumps and/or decreased expression of porins can confer multiple antibiotic resistance (MAR), causing resistance to at least three unrelated classes of antibiotics, detergents and dyes. It was hypothesized that in Campylobacter jejuni, the efflux systems CmeABC, CmeDEF and the major outer membrane porin protein, MOMP (encoded by porA) could confer MAR. Methods: The expression of cmeB, cmeF and porA in 32 MAR C. jejuni isolated from humans or poultry was determined by comparative (C)-reverse transcriptase (RT)-PCR and denaturing DHPLC. A further 13 ethidium bromide-resistant isolates and three control strains were also investigated. Accumulation of ciprofloxacin carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) was also determined for all strains. Results: Although resistance to ethidium bromide has been associated with MAR, expression of all three genes was similar in the ethidium bromide-resistant isolates. These data indicate that CmeB, CmeF and MOMP play no role in resistance to this agent in C. jejuni. Six MAR isolates over-expressed cmeB, 3/32 over-expressed cmeB and cmeF. No isolates over-expressed cmeF alone. Expression of porA was similar in all isolates. All nine isolates that over-expressed cmeB contained a mutation in cmeR, substituting glycine 86 with alanine. All cmeB over-expressing isolates also accumulated low concentrations of ciprofloxacin, which were restored to wild-type levels in the presence of CCCP. Conclusions: These data indicate that over-expression of cmeB is associated with MAR in isolates of C. jejuni. However, as cmeB was over-expressed by only one-third (9/32) of MAR isolates, these data also indicate other mechanisms of MAR in C. jejuni.
Resumo:
Objectives: To examine 397 strains of Salmonella enterica of human and animal origin comprising 35 serotypes for the presence of aadB, aphAI-IAB, aadA1, aadA2, bla(Carb(2)) or pse1, bla(Tem), cat1, cat2, dhfr1, floR, strA, sul1, sul2, tetA(A), tetA(B) and tetA(G) genes, the presence of class 1 integrons and the relationship of resistance genes to integrons and antibiotic resistance. Results: Some strains were resistant to ampicillin (91), chloramphenicol (85), gentamicin (2), kanamycin (14), spectinomycin (81), streptomycin (119), sulfadiazine (127), tetracycline (108) and trimethoprim (45); 219 strains were susceptible to all antibiotics. bla(Carb(2)), floR and tetA(G) genes were found in S. Typhimurium isolates and one strain of S. Emek only. Class 1 integrons were found in S. Emek, Haifa, Heidelberg, Mbandaka, Newport, Ohio, Stanley, Virchow and in Typhimurium, mainly phage types DT104 and U302. These strains were generally multi-resistant to up to seven antibiotics. Resistance to between three and six antibiotics was also associated with class 1 integron-negative strains of S. Binza, Dublin, Enteritidis, Hadar, Manhattan, Mbandaka, Montevideo, Newport, Typhimurium DT193 and Virchow. Conclusion: The results illustrate specificity of some resistance genes to S. Typhimurium or non- S. Typhimurium serotypes and the involvement of both class 1 integron and non-class 1 integron associated multi-resistance in several serotypes. These data also indicate that the bla(Carb(2)), floR and tetA(G) genes reported in the SG1 region of S. Typhimurium DT104, U302 and some other serotypes are still predominantly limited to S. Typhimurium strains.
Resumo:
Objective: To determine the effect of growth of five strains of Salmonella enterica and their isogenic multiply antibiotic-resistant (MAR) derivatives with a phenolic farm disinfectant or triclosan (biocides) upon the frequency of mutation to resistance to antibiotics or cyclohexane. Methods: Strains were grown in broth with or without the biocides and then spread on to agar containing ampicillin, ciprofloxacin or tetracycline each at 4x MIC or agar overlaid with cyclohexane. Incubation was for 24 and 48 h and the frequency of mutation to resistance was calculated for strains with and without prior growth with the biocides. MICs were determined and the presence of mutations in the acrR and marR regions was determined by sequencing and the presence of mutations in gyrA by light-cycler analysis, for a selection of the mutants that arose. Results: The mean frequency of mutation to antibiotic or cyclohexane resistance was increased similar to10- to 100-fold by prior growth with the phenolic disinfectant or triclosan. The increases were statistically significant for all antibiotics and cyclohexane following exposure to the phenolic disinfectant (P less than or equal to 0.013), and for ampicillin and cyclohexane following exposure to triclosan (P less than or equal to 0.009). Mutants inhibited by >1 mg/L ciprofloxacin arose only from strains that were MAR. Reduced susceptibility to ciprofloxacin (at 4x MIC for parent strains) alone was associated with mutations in gyrA. MAR mutants did not contain mutations in the acrR or marR region. Conclusions: These data renew fears that the use of biocides may lead to an increased selective pressure towards antibiotic resistance.
Resumo:
An efflux system, CmeABC, in Campylobacter jejuni was previously described, and a second efflux system, CmeDEF, has now been identified. The substrates of CmeDEF include ampicillin, ethidium bromide, acridine, sodium dodecyl sulfate (SDS), deoxycholate, triclosan, and cetrimide, but not ciprofloxacin or erythromycin. C. jejuni NCTC11168 and two efflux pump knockout strains, cmeB::Kan(r) and cmeF::Kan(r), were exposed to 0.5 to 1 mu g of ciprofloxacin/ml in agar plates. All mutants arising from NCTC11168 were resistant to ciprofloxacin but not to other agents and contained a mutation resulting in the replacement of threonine 86 with isoleucine in the quinolone resistance-determining region of GyrA. Mutants with two distinct phenotypes were selected from the efflux pump knockout strains. Mutants with the first phenotype were resistant to ciprofloxacin only and had the same substitution within GyrA as the NCTC11168-derived mutants. Irrespective of the parent strain, mutants with the second phenotype were resistant to ciprofloxacin, chloramphenicol, tetracycline, ethidium bromide, acridine orange, and SDS and had no mutation in gyrA. These mutants expressed levels of the efflux pump genes cmeB and cmeF and the major outer membrane protein gene porA similar to those expressed by the respective parent strains. No mutations were detected in cmeF or cmeB. Accumulation assays revealed that the mutants accumulated lower concentrations of drug. These data suggest the involvement of a non-CmeB or -CmeF efflux pump or reduced uptake conferring multiple-antibiotic resistance, which can be selected after exposure to a fluoroquinolone.
Resumo:
Aims: The aim of this study was to determine if three classes of farm disinfectants were able to select for ciprofloxacin or cyclohexane tolerant [ indicative of a multiple antibiotic resistance ( MAR) phenotype] Escherichia coli and if cyclohexane-tolerant E. coli could be isolated from farms. Methods and Results: Chicken slurry containing ca 1 : 99 ratio ciprofloxacin resistant : susceptible E. coli ( 10 different resistant strains examined) was treated for 24 h with each of the disinfectants and examined for survival of resistant : susceptible strains. Ciprofloxacin-sensitive ( n = 5) and - resistant ( n = 5) E. coli were grown with sublethal concentrations of the disinfectants and then plated to agar containing ciprofloxacin or overlaid with cyclohexane. Escherichia coli ( n = 389) isolated from farms were tested for cyclohexane tolerance. Minimum inhibitory concentrations ( MIC) were determined against representative isolates and mutants. The disinfectants did not select for the ciprofloxacin-resistant E. coli in poultry slurry but following growth with each of the three disinfectants, higher numbers ( Pless than or equal to 0(.)023) of cyclohexane-tolerant E. coli were isolated and these had a MAR phenotype. Of the 389 farm E. coli tested, only one was cyclohexane tolerant. Conclusions: It is possible that in a farm environment, E. coli could be exposed to similar concentrations of the disinfectants that are selected for MAR type organisms under these laboratory conditions. Significance and Impact of the Study: Data from this study suggest that cyclohexane-resistant E. coli are not common on farms, but in view of the ease of isolating them in the laboratory with farm disinfectants, further investigations on farms are warranted.
Resumo:
Objectives: To study how disinfectants affect antimicrobial susceptibility and phenotype of Salmonella enterica serovar Typhimurium SL1344. Methods: Wild-type strain SL1344 and its isogenic gyrA mutant were passaged daily for 7 days in subinhibitory concentrations, and separately for 16 days in gradually increasing concentrations of a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde (QACFG), an oxidizing compound blend (OXC), a phenolic tar acids-based disinfectant (TOP) and triclosan. The MICs of antimicrobials and antibiotics for populations and representative isolates and the proportion of cells resistant to the MICs for the wild-type were determined. Expression of acrB gene, growth at 37 degrees C and invasiveness of populations in Caco-2 intestinal epithelial cells were assessed. Results: QACFG and triclosan showed the highest selectivity for variants with reduced susceptibility to chloramphenicol, tetracycline, ampicillin, acriflavine and triclosan. Populations treated with the above biocides had reduced invasiveness in Caco-2 cells, and altered growth kinetics. Resistance to disinfectants was observed only after exposure to gradually increasing concentrations of triclosan, accompanied with a 2000-fold increase in its MIC. Growth in OXC and TOP did not affect the MICs of antibiotics, but resulted in the appearance of a proportion of cells resistant to the MIC of acriflavine and triclosan for the wild-type. Randomly selected stable variants from all populations, except the one treated with TOP, over-expressed acrB. Conclusions: In vitro exposure to QACFG and triclosan selects for Salmonella Typhimurium cells with reduced susceptibility to several antibiotics. This is associated with overexpression of AcrAB efflux pump, but accompanied with reduced invasiveness.
Resumo:
A recently developed capillary electrophoresis (CE)-negative-ionisation mass spectrometry (MS) method was used to profile anionic metabolites in a microbial-host co-metabolism study. Urine samples from rats receiving antibiotics (penicillin G and streptomycin sulfate) for 0, 4, or 8 days were analysed. A quality control sample was measured repeatedly to monitor the performance of the applied CE-MS method. After peak alignment, relative standard deviations (RSDs) for migration time of five representative compounds were below 0.4 %, whereas RSDs for peak area were 7.9–13.5 %. Using univariate and principal component analysis of obtained urinary metabolic profiles, groups of rats receiving different antibiotic treatment could be distinguished based on 17 discriminatory compounds, of which 15 were downregulated and 2 were upregulated upon treatment. Eleven compounds remained down- or upregulated after discontinuation of the antibiotics administration, whereas a recovery effect was observed for others. Based on accurate mass, nine compounds were putatively identified; these included the microbial-mammalian co-metabolites hippuric acid and indoxyl sulfate. Some discriminatory compounds were also observed by other analytical techniques, but CE-MS uniquely revealed ten metabolites modulated by antibiotic exposure, including aconitic acid and an oxocholic acid. This clearly demonstrates the added value of CE-MS for nontargeted profiling of small anionic metabolites in biological samples.
Resumo:
Poorer people are more likely to use antibiotics; inappropriate antibiotic use causes resistance, and health campaigns attempt to change behaviour through education. However, fuelled by the media, the public think antibiotic resistance is outside their control. Differences in the attribution of blame for antibiotic resistance in two genres of UK newspapers, targeting distinct socioeconomic groups, were examined using a mixed methods approach. Firstly, depiction of blame was categorised as either external to the lay public (outside their control) or internal (lay person accountable) and subjected to a chi-square test. Secondly, using critical discourse analysis, we examined the portrayal of the main agents through newspaper language. Data from 597 articles (307 broadsheets) analysed revealed a significant association between newspaper genre and attribution of blame for antibiotic resistance. While both newspaper types blamed antibiotic resistance predominantly on factors external to the lay public, broadsheets were more likely to acknowledge internal factors than tabloids. Tabloids provided a more skewed representation, exposing readers to inaccurate explanations about antibiotic resistance. They highlighted ineptitude in health professionals, victimising patients and blaming others, while broadsheets used less emotive language. Pharmacists should take special care to communicate the importance of appropriate antibiotic use against this backdrop of distortion.
Resumo:
Hydrophilic interaction chromatography–mass spectrometry (HILIC–MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial–host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared to a control group. Urine samples were collected at day zero, four and eight, and analyzed by HILIC–MS. Multivariate data analysis was applied to the urinary metabolic profiles to identify biochemical variation between the treatment groups. Principal component analysis found a clear distinction between those animals receiving antibiotics and the control animals, with twenty-nine discriminatory compounds of which twenty were down-regulated and nine up-regulated upon treatment. In the treatment group receiving antibiotics for four days, a recovery effect was observed for seven compounds after cessation of antibiotic administration. Thirteen discriminatory compounds could be putatively identified based on their accurate mass, including aconitic acid, benzenediol sulfate, ferulic acid sulfate, hippuric acid, indoxyl sulfate, penicillin G, phenol and vanillin 4-sulfate. The rat urine samples had previously been analyzed by capillary electrophoresis (CE) with MS detection and proton nuclear magnetic resonance (1H NMR) spectroscopy. Using CE–MS and 1H NMR spectroscopy seventeen and twenty-five discriminatory compounds were found, respectively. Both hippuric acid and indoxyl sulfate were detected across all three platforms. Additionally, eight compounds were observed with both HILIC–MS and CE–MS. Overall, HILIC–MS appears to be highly complementary to CE–MS and 1H NMR spectroscopy, identifying additional compounds that discriminate the urine samples from antibiotic-treated and control rats.
Resumo:
The use of antibiotics in birds and animals intended for human consumption within the European Union (EU) and elsewhere has been subject to regulation prohibiting the use of antimicrobials as growth promoters and the use of last resort antibiotics in an attempt to reduce the spread of multi-resistant Gram negative bacteria. Given the inexorable spread of antibiotic resistance there is an increasing need for improved monitoring of our food. Using selective media, Gram negative bacteria were isolated from retail chicken of UK-Intensively reared (n = 27), Irish-Intensively reared (n = 19) and UK-Free range (n = 30) origin and subjected to an oligonucleotide based array system for the detection of 47 clinically relevant antibiotic resistance genes (ARGs) and two integrase genes. High incidences of β-lactamase genes were noted in all sample types, acc (67%), cmy (80%), fox (55%) and tem (40%) while chloramphenicol resistant determinants were detected in bacteria from the UK poultry portions and were absent in bacteria from the Irish samples. Denaturing Gradient Gel Electrophoresis (DGGE) was used to qualitatively analyse the Gram negative population in the samples and showed the expected diversity based on band stabbing and DNA sequencing. The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population.
Resumo:
Amphotericin B (AmB) is widely used in the treatment of systemic fungal infections, despite its toxic effects. Nephrotoxicity, ascribed as the most serious toxic effect, has been related to the state of aggregation of the antibiotic. In search of the increase in AmB antifungal activity associated with low toxicity, several AmB-amphiphile formulations have been proposed. This work focuses on the structural characterization of a specific AmB formulation: AmB associated with sonicated dioctadecyl dimethylammonium bromide (DODAB) aggregates. Here, it was confirmed that sonicated DODAB dispersion is constituted by DODAB bicelles, and that monomeric AmB is much more soluble in bicelles than in DODAB vesicles. A new optical parameter is proposed for the estimation of the relative amount of amphiphile-bound monomeric AmB. With theoretical simulations of the spectra of spin labels incorporated in DODAB bicelles it was possible to prove that monomeric AmB binds preferentially to lipids located at the edges of DODAB bicelles, rigidifying them, and decreasing the polarity of the region. That special binding of monomeric AmB along the borders of bicelles, where the lipids are highly disorganized, could be used in the formulation of other carriers for the antibiotic, including mixtures of natural lipids which are known to form bicelles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Polymeric electroactive blends formed by electropolymerized aniline inside a non-conductive polyacrylamide porous matrix were already shown as suitable materials for the electrocontrolled release of model compounds like safranin. In this paper the intermolecular interactions between the two components of the blend are put in evidence by Raman spectroscopy measurements. Also, in situ optical microscopy was used to follow changes occurring in the polyaniline/polyacrylamide blend during pyrocathecol violet release tests. These two sets of experiments show the possibility of controlling electrochemically the release of both, safranin (a cation) and pyrocathecol violet (an anion) and allow to infer a release mechanism based on the electromechanical properties of the blends explaining the dependence of the release kinetics on the applied potential. Tetracycline release curves for different potentials and pHs are shown and the obtained profiles are in agreement with those expected for a device acting as an electrochemically driven pump due to the artificial muscle properties of the conducting phase of the blends. (c) 2007 Elsevier B.V. All rights reserved.