960 resultados para animal model of Temporal Lobe Epilepsy - TLE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to develop a new experimental animal model of infection with Mycobacterium chelonae in keratomileusis, we conducted a double-blind prospective study on 24 adult male New Zealand rabbits. One eye of each rabbit was submitted to automatic lamellar keratotomy with the automatic corneal shaper under general anesthesia. Eyes were immunosuppressed by a single local injection of methyl prednisolone. Twelve animals were inoculated into the keratomileusis interface with 1 µl of 10(6) heat-inactivated bacteria (heat-inactivated inoculum controls) and 12 with 1 µl of 10(6) live bacteria. Trimethoprim drops (0.1%, w/v) were used as prophylaxis for the surgical procedure every 4 h (50 µl, qid). Animals were examined by 2 observers under a slit lamp on the 1st, 3rd, 5th, 7th, 11th, 16th, and 23rd postoperative days. Slit lamp photographs were taken to document clinical signs. Animals were sacrificed when corneal disease was detected and corneal samples were taken for microbiological analysis. Eleven of 12 experimental rabbits developed corneal disease, and M. chelonae could be isolated from nine rabbits. Eleven of the 12 controls receiving a heat-inactivated inoculum did not develop corneal disease. M. chelonae was not isolated from any of the control rabbits receiving a heat-inactivated inoculum, or from the healthy cornea of control rabbits. Corneal infection by M. chelonae was successfully induced in rabbits submitted to keratomileusis. To our knowledge, this is the first animal model of M. chelonae infection following corneal flaps for refractive surgery to be described in the literature and can be used for the analysis of therapeutic responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a computational and statistical study of the influence of morphological changes on the electrophysiological response of neurons from an animal model of Alzheimer's Disease (AD). We combined experimental morphological data from rat hippocampal CA1 pyramidal cells with a well-established model of active membrane properties. Dendritic morphology and the somatic response to simulated current clamp conditions were then compared for cells from the control and the AD group. The computational approach allowed us to single out the influences of neuromorphology on neuronal response by eliminating the effects of active channel variability. The results did not reveal a simple relationship between morphological changes associated with AD and changes in neural response. However, they did suggest the existence of more complex than anticipated relationships between dendritic morphology and single-cell electrophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: The objective of this study is to create an experimental model of intestinal endometriosis in pigs, which might allow better understanding of deep infiltrating endometriosis and development of new treatment techniques. As secondary objective, we intend to create endometrial implants accessible by transrectal ultrasonography (TRUS). Study Design: Surgical experimental study in swine. Place and Duration of Study: This study was performed at the Instituto de Ensino e Pesquisa do Hospital Sírio-Libanês, São Paulo, Brazil, between January 2012 and December 2012. Methodology: Two sexually mature female minipigBR pigs underwent two laparotomies (each animal). The first laparotomy was performed to implant two fragments of autologous endometrium in the rectal wall. The second one was performed thirty days later to visualize, measure and obtain tissue of the site of the implants for histopathology study. A TRUS study was performed prior to the second surgery. The Institution’s Animal Utilization Study Committee approved the study. Results: In the first laparotomy a 5-cm segment of right uterine horn was resected. The endometrium was separated from the myometrium through sub-endometrial saline injection. Two endometrial fragments (1.0 x 2.0 cm) were dissected and sutured in the intra peritoneal anterior rectal wall of the animals. Thirty days later, all implants were identified during preoperative TRUS. “En-bloc” resection of the intestinal segment with the implants was performed during the second surgery. The autologous implants of endometrium invaded the muscular layer in one of the two animals. Conclusion: We demonstrated that the creation of an animal model of deep infiltrating endometriosis with intestinal involvement is feasible through a simple surgical technique. We believe that this model can be applied in experimental and clinical studies but further studies are necessary to refine the technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To compare two techniques used to create a larger animal model of venous valve incompetence. MATERIALS AND METHODS: To achieve vein dilatation as the primary cause of valve incompetence, common carotid jugular vein (JV) fistulas were created and optional filters were placed into the JV of sheep. Altogether, nine inferior vena cava filters were placed in three sheep in two stages. Six filters were placed caudal to the most caudal JV valve in three sheep and removed 6 weeks later. Then, three filters were placed across the most caudal valve in two sheep with competent valves and removed 3 weeks later. A common carotid artery-JV fistula was created in three sheep and followed-up for 1-3 weeks. Ascending and descending venograms were obtained to determine the JV sizes and function of their valves. The JVs removed at necropsy were studied with venoscopy. RESULTS: Only one of the six JVs with filters caudal to the most caudal valve had incompetent valves after filter removal at 6 weeks. In addition, only one of three JVs with the filter across the valve had incompetent valves after filter removal at 3 weeks. At 1-3-week follow-up of the group with common carotid artery-JV fistula, all three JVs had incompetent valves in the cephalad vein portion, but only one JV had an incompetent valve in its caudal portion. At venoscopy, the incompetent valves showed various degrees of damage ranging from shortening to the destruction of valve leaflets. CONCLUSION: Dilation of the valve annulus with a removable vena cava filter failed to produce valve incompetence. The promising results with the common carotid artery-JV fistula justify further detailed research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The goal of the present study was to elucidate the contribution of the newly recognized virulence factor choline to the pathogenesis of Streptococcus pneumoniae in an animal model of meningitis. Results: The choline containing strain D39Cho(-) and its isogenic choline-free derivative D39Cho(-)licA64 -each expressing the capsule polysaccharide 2 - were introduced intracisternally at an inoculum size of 10(3) CFU into 11 days old Wistar rats. During the first 8 h post infection both strains multiplied and stimulated a similar immune response that involved expression of high levels of proinflammatory cytokines, the matrix metalloproteinase 9 (MMP-9), IL-10, and the influx of white blood cells into the CSF. Virtually identical immune response was also elicited by intracisternal inoculation of 10(7) CFU equivalents of either choline-containing or choline-free cell walls. At sampling times past 8 h strain D39Cho(-) continued to replicate accompanied by an intense inflammatory response and strong granulocytic pleiocytosis. Animals infected with D39Cho(-) died within 20 h and histopathology revealed brain damage in the cerebral cortex and hippocampus. In contrast, the initial immune response generated by the choline-free strain D39Cho(-)licA64 began to decline after the first 8 h accompanied by elimination of the bacteria from the CSF in parallel with a strong WBC response peaking at 8 h after infection. All animals survived and there was no evidence for brain damage. Conclusion: Choline in the cell wall is essential for pneumococci to remain highly virulent and survive within the host and establish pneumococcal meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND CONTEXT In canine intervertebral disc (IVD) extrusion, a spontaneous animal model of spinal cord injury, hemorrhage is a consistent finding. In rodent models, hemorrhage might be involved in secondary tissue destruction by biochemical mechanisms. PURPOSE This study aimed to investigate a causal association between the extents of intramedullary, subdural and epidural hemorrhage and the severity of spinal cord damage following IVD extrusion in dogs. STUDY DESIGN/SETTING A retrospective study using histologic spinal cord sections from 83 dogs euthanized following IVD extrusion was carried out. METHODS The degree of hemorrhage (intramedullary, subdural, epidural), the degree of spinal cord damage in the epicenter (white and gray matter), and the longitudinal extent of myelomalacia were graded. Associations between the extent of hemorrhage and the degree of spinal cord damage were evaluated statistically. RESULTS Intramedullary and subdural hemorrhages were significantly associated with the degree of white (p<.001/ p=.004) and gray (both p<.001) matter damage, and with the longitudinal extension of myelomalacia (p<.001/p=.005). Intriguingly, accumulation of hemorrhagic cord debris inside or dorsal to a distended and ruptured central canal in segments distant to the epicenter of the lesion was observed exhibiting a wave-like pattern on longitudinal assessment. The occurrence of this debris accumulation was associated with high degrees of tissue destruction (all p<.001). CONCLUSIONS Tissue liquefaction and increased intramedullary pressure associated with hemorrhage are involved in the progression of spinal cord destruction in a canine model of spinal cord injury and ascending or descending myelomalacia. Functional and dynamic studies are needed to investigate this concept further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patch–clamp recordings of CA1 interneurons and pyramidal cells were performed in hippocampal slices from kainate- or pilocarpine-treated rat models of temporal lobe epilepsy. We report that γ-aminobutyric acid (GABA)ergic inhibition in pyramidal neurons is still functional in temporal lobe epilepsy because: (i) the frequency of spontaneous GABAergic currents is similar to that of control and (ii) focal electrical stimulation of interneurons evokes a hyperpolarization that prevents the generation of action potentials. In paired recordings of interneurons and pyramidal cells, synchronous interictal activities were recorded. Furthermore, large network-driven GABAergic inhibitory postsynaptic currents were present in pyramidal cells during interictal discharges. The duration of these interictal discharges was increased by the GABA type A antagonist bicuculline. We conclude that GABAergic inhibition is still present and functional in these experimental models and that the principal defect of inhibition does not lie in a complete disconnection of GABAergic interneurons from their glutamatergic inputs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recombinant adeno-associated virus (rAAV) vector capable of infecting cells and expressing rat glial cell line-derived neurotrophic factor (rGDNF), a putative central nervous system dopaminergic survival factor, under the control of a potent cytomegalovirus (CMV) immediate/early promoter (AAV-MD-rGDNF) was constructed. Two experiments were performed to evaluate the time course of expression of rAAV-mediated GDNF protein expression and to test the vector in an animal model of Parkinson’s disease. To evaluate the ability of rAAV-rGDNF to protect nigral dopaminergic neurons in the progressive Sauer and Oertel 6-hydroxydopamine (6-OHDA) lesion model, rats received perinigral injections of either rAAV-rGDNF virus or rAAV-lacZ control virus 3 weeks prior to a striatal 6-OHDA lesion and were sacrificed 4 weeks after 6-OHDA. Cell counts of back-labeled fluorogold-positive neurons in the substantia nigra revealed that rAAV-MD-rGDNF protected a significant number of cells when compared with cell counts of rAAV-CMV-lacZ-injected rats (94% vs. 51%, respectively). In close agreement, 85% of tyrosine hydroxylase-positive cells remained in the nigral rAAV-MD-rGDNF group vs. only 49% in the lacZ group. A separate group of rats were given identical perinigral virus injections and were sacrificed at 3 and 10 weeks after surgery. Nigral GDNF protein expression remained relatively stable over the 10 weeks investigated. These data indicate that the use of rAAV, a noncytopathic viral vector, can promote delivery of functional levels of GDNF in a degenerative model of Parkinson’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

KCNQ1 encodes KCNQ1, which belongs to a family of voltage-dependent K+ ion channel proteins. KCNQ1 associates with a regulatory subunit, KCNE1, to produce the cardiac repolarizing current, IKs. Loss-of-function mutations in the human KCNQ1 gene have been linked to Jervell and Lange–Nielsen Syndrome (JLNS), a disorder characterized by profound bilateral deafness and a cardiac phenotype. To generate a mouse model for JLNS, we created a line of transgenic mice that have a targeted disruption in the Kcnq1 gene. Behavioral analysis revealed that the Kcnq1−/− mice are deaf and exhibit a shaker/waltzer phenotype. Histological analysis of the inner ear structures of Kcnq1−/− mice revealed gross morphological anomalies because of the drastic reduction in the volume of endolymph. ECGs recorded from Kcnq1−/− mice demonstrated abnormal T- and P-wave morphologies and prolongation of the QT and JT intervals when measured in vivo, but not in isolated hearts. These changes are indicative of cardiac repolarization defects that appear to be induced by extracardiac signals. Together, these data suggest that Kcnq1−/− mice are a potentially valuable animal model of JLNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi−) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Retinitis pigmentosa is a heterogeneous group of inherited neurodegenerative retinal disorders characterized by a progressive peripheral vision loss and night vision difficulties, subsequently leading to central vision impairment. Chronic microglia activation is associated with various neurodegenerative diseases including retinitis pigmentosa. The objective of this study was to quantify microglia activation in the retina of P23H rats, an animal model of retinitis pigmentosa, and to evaluate the therapeutic effects of TUDCA (tauroursodeoxycholic acid), which has been described as a neuroprotective compound. Methods: For this study, homozygous P23H line 3 and Sprague-Dawley (SD) rats were injected weekly with TUDCA (500 mg/kg, ip) or vehicle (saline) from 20 days to 4 months old. Vertical retinal sections and whole-mount retinas were immunostained for specific markers of microglial cells (anti-CD11b, anti-Iba1 and anti-MHC-II). Microglial cell morphology was analyzed and the number of retinal microglial was quantified. Results: Microglial cells in the SD rat retinas were arranged in regular mosaics homogenously distributed within the plexiform and ganglion cell layers. In the P23H rat retina, microglial cells increased in number in all layers compared with control SD rat retinas, preserving the regular mosaic distribution. In addition, a large number of amoeboid CD11b-positive cells were observed in the P23H rat retina, even in the subretinal space. Retinas of TUDCA-treated P23H animals exhibited lower microglial cell number in all layers and absence of microglial cells in the subretinal space. Conclusions: These results report novel TUDCA anti-inflammatory actions, with potential therapeutic implications for neurodegenerative diseases, including retinitis pigmentosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta revisión sistemática de la literatura tuvo como objetivo investigar sobre la depresión en personas con epilepsia en la última década (2005-2015), enfocándose en identificar en el paciente con epilepsia: características sociodemográficas, prevalencia de la depresión, tipos de intervención para el manejo de la depresión, factores asociados con la aparición y el mantenimiento de la depresión y por último, identificar las tendencias en investigación en el estudio de la depresión en pacientes con epilepsia. Se revisaron 103 artículos publicados entre 2005 y 2015 en bases de datos especializadas. Los resultados revelaron que la prevalencia de depresión en pacientes con epilepsia es diversa y oscila en un rango amplio entre 3 y 70 %, por otro lado, que las principales características sociodemográficas asociadas a la depresión está el ser mujer, tener un estado civil soltero y tener una edad comprendida entre los 25 y los 45 años. A esto se añade, que los tratamientos conformados por terapia psicológica y fármacos, son la mejor opción para garantizar la eficacia en los resultados del manejo de la depresión en los pacientes con epilepsia. Con respecto a los factores asociados a la aparición de la depresión en pacientes con epilepsia, se identificaron causas tanto neurobiológicas como psicosociales, asimismo los factores principales asociados al mantenimiento fueron una percepción de baja calidad de vida y una baja auto-eficacia. Y finalmente los tipos de investigación más comunes son de tipo aplicado, de carácter descriptivo, transversales y de medición cuantitativa.