921 resultados para aluminum phthalocyanine chloride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastic flow of quenched aluminium at 86°K was investigated by ‘differential-stress’ creep tests in order to evaluate the rate-controlling mechanism in as-quenched and fully aged states. The experimental values of activation volume (4·3 × 10−21 cm3 for as-quenched and 5·5×l0−21cm3 for fully aged) and the total energy for thermal activation process (0·4 ev for both) are in accordance with the jog hardening and loop hardening mechanisms in quenched and fully aged states respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation omega phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The omega phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of omega phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as alpha-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that omega phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the omega phase has been suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design of the required tool is a key and important parameter in the technique of friction stir welding (FSW). This is so because tool design does exert a close control over the quality of the weld. In an attempt to optimize tool design and its selection, it is essential and desirable to understand the mechanisms governing the formation of the weld. In this research study, few experiments were conducted to systematically analyze the intrinsic mechanisms governing the formation of the weld and to effectively utilize the analysis to establish a logical basis for design of the tool. For this purpose, the experiments were conducted using different geometries of the shoulder and pin of the rotating tool in such a way that only tool geometry had an intrinsic influence on formation of the weld. The results revealed that for a particular diameter of the pin there is an optimum diameter of the shoulder. Below this optimum shoulder diameter, the weld does not form while above the optimum diameter the overall symmetry of the weld is lost. Based on experimental results, a mechanism for the formation of friction stir weld is proposed. A synergism of the experimental results with the proposed mechanism is helpful in establishing the set of welding parameters for a given material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes the course of microstructure evolution during accumulative roll bonding (ARB) of dissimilar aluminum alloys AA2219 and AA5086. The two alloys were sandwiched as alternate layers and rolled at 300 degrees C up to 8 passes with 50% height reduction per pass. A strong bonding between successive layers accompanied by substantial grain refinement (similar to 200-300 nm) is achieved after 8 passes of ARB. The processing schedule has successfully maintained the iso-strain condition up to 6 cycles between the two alloys. Afterwards, the fracture and fragmentation of AA5086 layers dominate the microstructure evolution. Mechanical properties of the 8 pass ARB processed material were evaluated in comparison to the two starting alloy sheets via room temperature tensile tests along the rolling direction. The strength of the 8 pass ARB processed material lies between that of the two starting alloys while the ductility decreases after ARB than that of the two constituent starting alloys. These differences in mechanical behavior have been attributed to the microstructural aspects of the individual layer and the fragmentation process. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chemoselective reduction of olefins and acetylenes is demonstrated by employing catalytic amounts of ferric chloride hexahydrate (FeCl3 center dot 6H(2)O) and aqueous hydrazine (NH2NH2 center dot H2O) as hydrogen source at room temperature. The reduction is chemoselective and tolerates a variety of reducible functional groups. Unlike other metal-catalysed reduction methods, the present method employs a minimum amount of aqueous hydrazine (1.5-2 equiv.). Also, the scope of this method is demonstrated in the synthesis of ibuprofen in aqueous medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical performance of Li-O-2 cells depends mainly on the kinetics of the cathode reaction, namely, oxygen reduction reaction in non-aqueous electrolytes. The catalyst plays an important role on the kinetics of the reaction. In the present work, dilithium phthalocyanine is used as the catalyst in the cathode of Li-O-2 cells. Dual-layer O-2 electrodes are fabricated employing a high surface area microporous carbon with Ni gauge current collector present between the two layers. Discharge capacity of Li-O-2 cell measured at 0.2 mA.cm(-2) is about 30 mAh.cm(-2). Phthalocyanine ring is considered to interact with O-2 producing Li2Pc+delta - O-2(-delta) as a reaction intermediate, which facilitates the electron-transfer reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports the effect of the addition of small amount of Al on the microstructure and properties of HITPERM class rapidly solidified Fe44Co44Zr7B4Cu1 glassy alloy. Using three dimensional atom probe measurements we present evidence for the formation of Cu clusters on annealing in the metallic glass matrix of the Al containing alloy Fe43Co43Al2Zr7B4Cu1. Such clusters are otherwise absent in the parent alloy under similar conditions. The Cu clusters provides heterogeneous nucleation sites for the formation of bcc alpha'-FeCo phase leading to an increase in number density of this nanocrystalline phase and thereby enhancing the magnetic properties. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to prepare a highly active immobilized titania/silica photocatalyst and to test its performance in situ toward degradation of toluene as one of the major toxic indoor contaminants. In this work, two different titania layers immobilized on Al sheets were synthesized via low temperature sol-gel method employing presynthesized highly active titania powders (Degussa P25 and Millennium PC500, mass ratio 1:1): (a) with a silica/titania binder and a protective layer and (b) without the binder. The photocatalysts were characterized by X-ray diffraction, nitrogen sorption measurements, scanning electron microscopy (SEM), infrared spectroscopy, and UV-vis diffuse reflectance spectroscopy (DRS). The in situ photocatalytic degradation of gaseous toluene was selected as a probe reaction to test photocatalytic activity and to verify the potential application of these materials for air remediation. Results show that nontransparent highly photocatalytically active coatings based on the silica/titania binder and homogeneously dispersed TiO2 powders were obtained on the Al sheets. The crystalline structure of titania was not altered upon addition of the binder, which also prevented inhomogeneous agglomeration of particles on the photocatalyst surface. The photoactivity results indicate that the adsorption properties and photocatalytic activity of immobilized photocatalysts with the silica/titania binder and an underlying protective layer were very effective and additionally, they exhibited considerably improved adhesion and uniformity. We present a new highly photocatalytically active immobilized catalyst on a convenient metallic support, which has a potential application in an air cleaning device.